Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:title>ABSTRACT</jats:title> <jats:p>Antigenic variation inherent in human immunodeficiency virus type 1 (HIV-1) virions that successfully instigate new infections transferred by sex has not been well defined. Yet this is the viral “challenge” which any vaccine-induced immunity must deal with. Closely timed comparisons of the virus circulating in the “donor” and that which initiates new infection are difficult to carry out rigorously, as suitable samples are very hard to get in the face of ethical hurdles. Here we investigate HIV-1 variation in four homosexual couples where we sampled blood from both parties within several weeks of the estimated transmission event. We analyzed variation within highly immunogenic HIV-1 internal proteins encoding epitopes recognized by cytotoxic Tlymphocytes (CTLs). These responses are believed to be crucial as a means of containing viral replication. In the donors we detected virions capable of evading host CTL recognition at several linked epitopes of distinct HLA class I restriction. When a donor transmitted escape variants to a recipient with whom he had HLA class I molecules in common, the recipient's CTL response to those epitopes was prevented, thus impeding adequate viral control. In addition, we show that even when HLA class I alleles are disparate in the transmitting couple, a single polymorphism can abolish CTL recognition of an overlapping epitope of distinct restriction and so confer immune escape properties to the recipient's seroconversion virus. In donors who are themselves controlling an early, acute infection, the precise timing of onward transmission is a crucial determinant of the viral variants available to compose the inoculum.</jats:p>

Original publication




Journal article


Journal of Virology


American Society for Microbiology

Publication Date





13953 - 13962