Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Foot-and-mouth disease virus (FMDV) enters cells by attaching to cellular receptor molecules of the integrin family, one of which has been identified as the RGD-binding integrin alpha(v)beta3. Here we report that, in addition to an integrin binding site, type O strains of FMDV share with natural ligands of alpha(v)beta3 (i.e., vitronectin and fibronectin) a specific affinity for heparin and that binding to the cellular form of this sulfated glycan, heparan sulfate, is required for efficient infection of cells in culture. Binding of the virus to paraformaldehyde-fixed cells was powerfully inhibited by agents such as heparin, that compete with heparan sulfate or by agents that compete for heparan sulfate (platelet factor 4) or that inactivate it (heparinase). Neither chondroitin sulfate, a structurally related component of the extracellular matrix, nor dextran sulfate appreciably inhibited binding. The functional importance of heparan sulfate binding was demonstrated by the facts that (i) infection of live cells by FMDV could also be blocked specifically by heparin, albeit at a much higher concentration of inhibitor; (ii) pretreatment of cells with heparinase reduced the number of plaques formed compared with that for untreated cells; and (iii) mutant cell lines deficient in heparan sulfate expression were unable to support plaque formation by FMDV, even though they remained equally susceptible to another picornavirus, bovine enterovirus. The results show that entry of type O FMDV into cells is a complex process and suggest that the initial contact with the cell surface is made through heparan sulfate.

Type

Journal article

Journal

Journal of virology

Publication Date

08/1996

Volume

70

Pages

5282 - 5287

Addresses

Pirbright Laboratory, Institute for Animal Health, Pirbright, Surrey, United Kingdom.

Keywords

Cell Line, Cell Membrane, Animals, Cattle, Aphthovirus, Foot-and-Mouth Disease, Heparitin Sulfate, Receptors, Cell Surface, Receptors, Virus, Cricetinae