Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Persistence of HIV through integration into host DNA in CD4+ T cells presents a major barrier to virus eradication. Viral integration may be curtailed when CD8+ T cells are triggered to kill infected CD4+ T cells through recognition of histocompatibility leukocyte antigen (HLA) class I-bound peptides derived from incoming virions. However, this has been reported only in individuals with "beneficial" HLA alleles that are associated with superior HIV control. Through interrogation of the pre-integration immunopeptidome, we obtain proof of early presentation of a virion-derived HLA-A∗02:01-restricted epitope, FLGKIWPSH (FH9), located in Gag Spacer Peptide 2 (SP2). FH9-specific CD8+ T cell responses are detectable in individuals with primary HIV infection and eliminate HIV-infected CD4+ T cells prior to virus production in vitro. Our data show that non-beneficial HLA class I alleles can elicit an effective antiviral response through early presentation of HIV virion-derived epitopes and also demonstrate the importance of SP2 as an immune target.

Original publication

DOI

10.1016/j.celrep.2021.109103

Type

Journal article

Journal

Cell reports

Publication Date

05/2021

Volume

35

Addresses

Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Research In Viral Eradication of Reservoirs (RIVER) trial study group. Electronic address: hongbing.yang@ndm.ox.ac.uk.

Keywords

Research in Viral Eradication of Reservoirs (RIVER) trial study group