Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The heterophil is the major polymorphonuclear cell in birds with a functional capacity akin to that of the mammalian neutrophil. Herein, we demonstrate that heterophils constitutively express TLR1/6/10, TLR2 type 1, TLR2 type 2, TLR3, TLR4, TLR5, and TLR7 mRNA. Furthermore, TLR agonists, including flagellin (from Salmonella typhimurium, FGN), peptidoglycan (from Staphylococcus aureus, PGN), ultra-pure lipopolysaccharide (from Salmonella minnesota, LPS), the synthetic double stranded RNA analog [poly(I:C)], and the guanosine analog, loxoribine (LOX) directly induced both an oxidative burst and a degranulation response. Interestingly, the synthetic bacterial lipoprotein Pam3CSK4 (palmitoyl-3-cysteine-serine-lysine-4, PAM) induced degranulation, but no oxidative burst. The bacterial TLR agonists (PAM, PGN, LPS, and FGN) all induced an up-regulation of expression of mRNA of the pro-inflammatory cytokines IL-1beta, IL-6, and IL-8; whereas both poly(I:C) and LOX induced a down-regulation of these cytokine mRNAs. Stimulation of heterophils with each specific TLR agonist led to a differential increase in the phosphorylation of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation, but not the phosphorylation of c-Jun NH2-terminal kinase (JNK). The broad TLR expression profile in heterophils reflects their principal role as first line effector cells in avian host defense against bacterial, viral, fungal, and parasitic infections. The results demonstrate the differential involvement of TLR-induced signals in the stimulation of transduction pathways that regulate the oxygen-dependent and -independent antimicrobial defense mechanisms of avian heterophils.

Original publication

DOI

10.1016/j.dci.2005.02.002

Type

Journal article

Journal

Developmental and comparative immunology

Publication Date

01/2005

Volume

29

Pages

791 - 807

Addresses

USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA. kogut@ffsru.tamu.edu

Keywords

Neutrophils, Animals, Chickens, Peptidoglycan, Lipopolysaccharides, Flagellin, Membrane Glycoproteins, Receptors, Cell Surface, RNA, Messenger, Guanosine, Poly I-C, Inflammation Mediators, Cytokines, Respiratory Burst, Cell Degranulation, MAP Kinase Signaling System, Gene Expression, Base Sequence, Toll-Like Receptors, Toll-Like Receptor 1, Toll-Like Receptor 2, Toll-Like Receptor 3, Toll-Like Receptor 4, Toll-Like Receptor 5, Toll-Like Receptor 7