Parallel Induction of CH505 B Cell Ontogeny-Guided Neutralizing Antibodies and tHIVconsvX Conserved Mosaic-Specific T Cells against HIV-1.
Wee EG., Moyo NA., Saunders KO., LaBranche C., Donati F., Capucci S., Parks R., Borthwick N., Hannoun Z., Montefiori DC., Haynes BF., Hanke T.
The aim of this work was to start collecting information on rational combination of antibody (Ab) and T cell vaccines into single regimens. Two promising candidate HIV-1 vaccine strategies, sequential isolates of CH505 virus Envs developed for initiation of broadly neutralizing antibody lineages and conserved-mosaic tHIVconsvX immunogens aiming to induce effective cross-clade T cell responses, were combined to assess vaccine interactions. These immunogens were delivered in heterologous vector/modality regimens consisting of non-replicating simian (chimpanzee) adenovirus ChAdOx1 (C), non-replicating poxvirus MVA (M), and adjuvanted protein (P). Outbred CD1-SWISS mice were vaccinated intramuscularly using either parallel CM8M (tHIVconsvX)/CPPP (CH505) or sequential CM16M (tHIVconsvX)/CPPP (CH505) protocols, the latter of which delivered T cell CM prior to the CH505 Env. CM8M (tHIVconsvX) and CPPP or CMMP (CH505) vaccinations alone were included as comparators. The vaccine-elicited HIV-1-specific trimer-binding and neutralizing Abs and CD8+/CD4+ T cell responses induced by the combined and comparator regimens were not statistically separable among regimens. The Ab-lineage immunogen strategy was particularly suited for combined regimens for its likely less potent induction of Env-specific T cell responses relative to homologous epitope-based vaccine strategies. These results inform design of the first rationally combined Ab and T cell vaccine regimens in human volunteers.