Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Double-stranded (ds)RNA viruses replicate and transcribe their genome within a proteinaceous viral capsid to evade host cell defenses. While Reovirale s members use conservative transcription, most dsRNA viruses, including cystoviruses, utilize semi-conservative transcription, where the positive strand of the genome functions as mRNA. Here, we visualize semi-conservative transcription activation in cystovirus ɸ6 double-layered particles using cryogenic electron microscopy. We observe nucleotide-triggered disassembly of the domain-swapped outer capsid layer, subsequent expansion of the inner capsid layer, and stepwise assembly of transcription complexes at the opposing poles of the spooled dsRNA genome. These complexes consist of the viral polymerases embedded into a triskelion formed by the minor protein P7, which we show as essential for continuous transcription. The packaging hexamers proximal to the transcription sites channel the viral mRNA exit. Our results define the complex molecular pathway from the quiescent state to activated semi-conservative transcription.

Original publication

DOI

10.1101/2025.07.23.666269

Type

Journal article

Journal

bioRxiv

Publication Date

24/07/2025