Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. SVV mediates cell entry by attachment to the receptor anthrax toxin receptor 1 (ANTXR1). Here we determine atomic structures of mature SVV particles alone and in complex with ANTXR1 in both neutral and acidic conditions, as well as empty “spent” particles in complex with ANTXR1 in acidic conditions by cryoelectron microscopy. SVV engages ANTXR1 mainly by the VP2 DF and VP1 CD loops, leading to structural changes in the VP1 GH loop and VP3 GH loop, which attenuate interprotomer interactions and destabilize the capsid assembly. Despite lying on the edge of the attachment site, VP2 D146 interacts with the metal ion in ANTXR1 and is required for cell entry. Though the individual substitution of most interacting residues abolishes receptor binding and virus propagation, a serine-to-alanine mutation at VP2 S177 significantly increases SVV proliferation. Acidification of the SVV–ANTXR1 complex results in a major reconfiguration of the pentameric capsid assemblies, which rotate ∼20° around the icosahedral fivefold axes to form a previously uncharacterized spent particle resembling a potential uncoating intermediate with remarkable perforations at both two- and threefold axes. These structures provide high-resolution snapshots of SVV entry, highlighting opportunities for anticancer therapeutic optimization.</jats:p>

Original publication

DOI

10.1073/pnas.1814309115

Type

Journal article

Journal

Proceedings of the National Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Publication Date

18/12/2018

Volume

115

Pages

13087 - 13092