Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:title>ABSTRACT</jats:title><jats:p><jats:named-content xmlns:xlink="http://www.w3.org/1999/xlink" content-type="genus-species" xlink:type="simple">Neisseria meningitidis</jats:named-content>causes half a million cases of septicemia and meningitis globally each year. The opacity (Opa) integral outer membrane proteins from<jats:named-content xmlns:xlink="http://www.w3.org/1999/xlink" content-type="genus-species" xlink:type="simple">N. meningitidis</jats:named-content>are polymorphic and highly immunogenic. Particular combinations of Opa proteins are associated with the hyperinvasive meningococcal lineages that have caused the majority of serogroup B and C meningococcal disease in industrialized countries over the last 60 years. For the first time, this genetic structuring of a diverse outer membrane protein family has been used to select a novel combination of representative antigens for immunogenicity testing. Fourteen recombinant Opa variants were produced and used in murine immunizations inducing an increase in specific antimeningococcal total IgG levels. All 14 Opa proteins elicited bactericidal antibodies against at least one hyperinvasive meningococcal isolate, and most isolates from each hyperinvasive lineage were killed by at least one Opa antiserum at a titer of 1:16 or greater. Cross-reactive bactericidal antibody responses were observed among clonal complexes. A theoretical coverage of 90% can be achieved by using a particular combination of 6 Opa proteins against an isolate collection of 227 recent United Kingdom disease cases. This study indicates the potential of Opa proteins to provide broad coverage against multiple meningococcal hyperinvasive lineages.</jats:p>

Original publication

DOI

10.1128/iai.01338-10

Type

Journal article

Journal

Infection and Immunity

Publisher

American Society for Microbiology

Publication Date

07/2011

Volume

79

Pages

2810 - 2818