Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The World Health Organization (WHO) recently recommended the programmatic use of the R21/Matrix-M vaccine for Plasmodium falciparum malaria prevention in children living in malaria-endemic areas. To determine its effects on humoral immunity, we conducted a proteomic analysis of polyclonal IgG antibodies directed against the NANP tetrapeptide of the circumsporozoite protein (CSP), which comprises the vaccine's core immunogen. In 10 malaria-naïve adult volunteers, R21/Matrix-M induced polarized IgG anti-NANP repertoires, heavily skewed for IGHV3-30/3-33 genes bearing minimal somatic mutation, which remained static in composition following a controlled human malaria infection challenge. Notably, these vaccine-generated antibodies cross-reacted with another protective CSP epitope, the N-terminal junction region, despite its absence from the R21 construct. NANP-specific IGHV3-30/3-33 mAbs mined from polyclonal IgG repertoires blocked sporozoite invasion in vitro and prevented parasitemia in vivo. Overall, R21/Matrix-M elicits polarized, minimally mutated, polyclonal IgG responses that can target multiple protective CSP epitopes, offering molecular insight into the serological basis for its demonstrated efficacy against P. falciparum malaria.

Original publication

DOI

10.1084/jem.20241908

Type

Journal article

Journal

The Journal of experimental medicine

Publication Date

10/2025

Volume

222

Addresses

The University of Texas at Austin , Austin, TX, USA.

Keywords

Animals, Humans, Plasmodium falciparum, Malaria, Falciparum, Immunoglobulin G, Protozoan Proteins, Malaria Vaccines, Antibodies, Protozoan, Epitopes, Cross Reactions, Adult