Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The COVID-19 pandemic saw the first extensive use of adenoviral vector vaccines, with over 3 billion doses produced during the first year of the pandemic alone and an estimated 6 million lives saved. These vaccines were safe and effective, and could be produced at low cost in several continents allowing widespread use in low- and middle-income countries (LMICs). Despite their successful deployment against SARS-CoV-2, their impact has been overshadowed by relatively lower immunogenicity in contrast to mRNA vaccine technologies and very rare but serious adverse events such as vaccine-induced thrombotic thrombocytopaenia (VITT). The next-generation of adenoviral vector vaccines must address these challenges: here, we explore strategies to improve immunogenicity and safety by novel serotype selection, vector engineering, capsid modification and new delivery technologies, and discuss opportunities for next-generation adenoviral vectors against infectious disease and cancer.

Original publication

DOI

10.1080/21645515.2025.2514356

Type

Journal article

Journal

Human vaccines & immunotherapeutics

Publication Date

12/2025

Volume

21

Addresses

Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Keywords

Humans, Adenoviridae, Genetic Vectors, Immunogenicity, Vaccine, COVID-19, SARS-CoV-2, COVID-19 Vaccines, Vaccine Development