Background: Novel vaccines targeting the world’s deadliest pathogen Mycobacterium tuberculosis (Mtb) are urgently needed as the efficacy of the Bacillus Calmette–Guérin (BCG) vaccine in its current use is limited. HLA-E is a virtually monomorphic unconventional antigen presentation molecule, and HLA-E-restricted Mtb-specific CD8+ T cells can control intracellular Mtb growth, making HLA-E a promising vaccine target for Mtb. Methods: In this study, we evaluated the frequency and phenotype of HLA-E-restricted Mtb-specific CD4+/CD8+ T cells in the circulation and bronchoalveolar lavage fluid of two independent non-human primate (NHP) studies and from humans receiving BCG either intradermally or mucosally. Results: BCG vaccination followed by Mtb challenge in NHPs did not affect the frequency of circulating and local HLA-E–Mtb CD4+ and CD8+ T cells, and we saw the same in humans receiving BCG. HLA-E–Mtb T cell frequencies were significantly increased after Mtb challenge in unvaccinated NHPs, which was correlated with higher TB pathology. Conclusions: Together, HLA-E–Mtb-restricted T cells are minimally induced by BCG in humans and rhesus macaques (RMs) but can be elicited after Mtb infection in unvaccinated RMs. These results give new insights into targeting HLA-E as a potential immune mechanism against TB.
Journal article
Vaccines
MDPI AG
01/10/2024
12
1129 - 1129