Professor Quentin Sattentau

Research Area: Immunology
Technology Exchange: Cellular immunology
Scientific Themes: Immunology & Infectious Disease
Keywords: HIV-1, vaccine, immunogens, adjuvants, neutralising antibodies and viral reservoirs
Web Links:

We are interested in designing new immunogens to elicit neutralizing antibodies to conserved regions on the HIV-1 envelope glycoprotein (Env) spike. Env has evolved numerous antibody evasion mechanisms that make antibody-based vaccine design a formidable task. Amongst these mechanisms are structural and conformational instability, both of which render Env a difficult target for B cell recognition, and the immunodominance of highly variable regions, facilitating viral escape from antibody attack. We have adopted several parallel strategies to overcome these immune evasion mechanisms. Firstly, we are using chemical cross-linking to ‘lock’ the Env into a stable conformation that should extend in vivo half life and facilitate B cell recognition of conserved surfaces. Second we are using post-translational targeted addition of synthetic glycans to mask proteins surfaces with undesirable immunogenicity. Third, we are investigating appropaches to mimic small conserved glycopeptide epitopes of Env using synthetic glycopeptides, to focus the antibody response to these areas.

Since subunit vaccines require robust adjuvantation to elicit robust immune responses, we are in parallel characterising novel adjuvants for use with viral glycoproteins. We recently discovered a new family of adjuvant molecules called polyethyleneimine (PEI), well known for its nucleic acid transduction activity. PEI is a polycations, and has potent mucosal and systemic adjuvant activity with an immunological signature similar to, but more potent than, aluminium salts. PEI triggers both T cell and antibody responses by activating both the innate and adaptive arms of the immune response. We are currently studying the potential of PEI to adjuvant HIV-1 Env, and hope to investigate its ability to adjuvant bacterial antigens for immersion vaccination of fish. A second family of adjuvants is the carbomers, particularly carbopol, a group of cross-linked polyanions. These molecules activate a pro-inflammatory Th1-type immune response eliciting potent antibody and cytotoxic T cell responses. Again these may find utility in an HIV Env-based vaccine for generating neutralising antibody responses.

HIV-1 spreads with a host by two mechanisms – release of cell-free virions and directed cell-to-cell spread between contacting infected and uninfected cells. We have shown that cell-cell spread of HIV may confer advantages over cell-free spread, such as preferential infection of myeloid cells such as macrophages, more rapid viral replication and dissemination, and resistance to both neutralising antibodies and antiretroviral therapy. These findings have relevance to antibody-based vaccine design, therapeutic intervention, and the establishment and maintenance of viral reservoirs. We are continuing this work with the aim of better understanding how we might overcome or limit cell-to-cell spread to reduce viral reservoir formation and resistance to antibody attack.

Name Department Institution Country
Professor Ben Davis Chemistry University of Oxford United Kingdom
Prof Christian Eggeling (RDM) Investigative Medicine Division Oxford University, Weatherall Institute of Molecular Medicine United Kingdom
Dr Jakub Chojnacki Weatherall Institute for Molecular Medicine University of Oxford United Kingdom
Professor John Moore Cornell University United States
Dr Rogier Sanders Retrovirology University of Amsterdam Netherlands
Professor Robin Shattock Imperial College, University of London United Kingdom
LaBranche CC, McGuire AT, Gray MD, Behrens S, Zhou T, Sattentau QJ, Peacock J, Eaton A, Greene K, Gao H et al. 2018. HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathog, 14 (11), pp. e1007431. | Show Abstract | Read more

Broadly neutralizing antibody (bnAb) induction is a high priority for effective HIV-1 vaccination. VRC01-class bnAbs that target the CD4 binding site (CD4bs) of trimeric HIV-1 envelope (Env) glycoprotein spikes are particularly attractive to elicit because of their extraordinary breadth and potency of neutralization in vitro and their ability to protect against infection in animal models. Glycans bordering the CD4bs impede the binding of germline-reverted forms of VRC01-class bnAbs and therefore constitute a barrier to early events in initiating the correct antibody lineages. Deleting a subset of these glycans permits Env antigen binding but not virus neutralization, suggesting that additional barriers impede germline-reverted VRC01-class antibody binding to functional Env trimers. We investigated the requirements for functional Env trimer engagement of VRC01-class naïve B cell receptors by using virus neutralization and germline-reverted antibodies as surrogates for the interaction. Targeted deletion of a subset of N-glycans bordering the CD4bs, combined with Man5 enrichment of remaining N-linked glycans that are otherwise processed into larger complex-type glycans, rendered HIV-1 426c Env-pseudotyped virus (subtype C, transmitted/founder) highly susceptible to neutralization by near germline forms of VRC01-class bnAbs. Neither glycan modification alone rendered the virus susceptible to neutralization. The potency of neutralization in some cases rivaled the potency of mature VRC01 against wildtype viruses. Neutralization by the germline-reverted antibodies was abrogated by the known VRC01 resistance mutation, D279K. These findings improve our understanding of the restrictions imposed by glycans in eliciting VRC01-class bnAbs and enable a neutralization-based strategy to monitor vaccine-elicited early precursors of this class of bnAbs.

Schiffner T, Pallesen J, Russell RA, Dodd J, de Val N, LaBranche CC, Montefiori D, Tomaras GD, Shen X, Harris SL et al. 2018. Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathog, 14 (5), pp. e1006986. | Show Abstract | Read more

Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine.

Ribeiro de Almeida C, Dhir S, Dhir A, Moghaddam AE, Sattentau Q, Meinhart A, Proudfoot NJ. 2018. RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Mol Cell, 70 (4), pp. 650-662.e8. | Show Abstract | Read more

Class switch recombination (CSR) at the immunoglobulin heavy-chain (IgH) locus is associated with the formation of R-loop structures over switch (S) regions. While these often occur co-transcriptionally between nascent RNA and template DNA, we now show that they also form as part of a post-transcriptional mechanism targeting AID to IgH S-regions. This depends on the RNA helicase DDX1 that is also required for CSR in vivo. DDX1 binds to G-quadruplex (G4) structures present in intronic switch transcripts and converts them into S-region R-loops. This in turn targets the cytidine deaminase enzyme AID to S-regions so promoting CSR. Notably R-loop levels over S-regions are diminished by chemical stabilization of G4 RNA or by the expression of a DDX1 ATPase-deficient mutant that acts as a dominant-negative protein to reduce CSR efficiency. In effect, we provide evidence for how S-region transcripts interconvert between G4 and R-loop structures to promote CSR in the IgH locus.

Doolittle WF, Finlay BB, Fischetti VA, Kaufmann SHE, Sasakawa C, Sattentau Q. 2018. How Has Microbiology Changed over the Past 25 Years? Trends Microbiol, 26 (4), pp. 246-250. | Read more

Karaji N, Sattentau QJ. 2017. Efferocytosis of Pathogen-Infected Cells. Front Immunol, 8 (DEC), pp. 1863. | Show Abstract | Read more

The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via "find me" signals, recognition via "eat me" signals and down-modulation of regulatory "don't eat me" signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.

Capucci S, Wee EG, Schiffner T, LaBranche CC, Borthwick N, Cupo A, Dodd J, Dean H, Sattentau Q, Montefiori D et al. 2017. HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. PLoS One, 12 (8), pp. e0181886. | Show Abstract | Read more

Rabbits and monkeys immunized with HIV type 1 (HIV-1) native-like BG505 SOSIP.664 (BG505s) glycoprotein trimers are known to induce antibodies that can neutralize the autologous tier-2 virus. Here, we assessed the induction of HIV-1 trimer binding and neutralizing antibody (nAb) titres when BG505s trimers were also delivered by non-replicating simian (chimpanzee) adenovirus and non-replicating poxvirus modified vaccinia virus Ankara (MVA) vaccine vectors. First, we showed that approximately two-thirds and one-third of the trimers secreted from the ChAdOx1.BG505s (C) and MVA.BG505s (M) vaccine-infected cells, respectively, were cleaved and in a native-like conformation. Rabbits were immunized intramuscularly with these vaccine vectors and in some cases boosted with ISCOMATRIX™-adjuvanted BG505s protein trimer (P), using CCC, MMM, PPP, CPP, MPP and CMP vaccine regimens. We found that the peak trimer-binding antibody and tier-1A and autologous tier-2 nAb responses induced by the CC, CM, PPP, CPP, MPP and CMP regimens were comparable, although only PPP induced autologous tier-2 nAbs in all the immunized animals. Three animals developed weak heterologous tier-2 nAbs. These results demonstrate that ChAdOx1 and MVA vectors are useful delivery modalities for not only T-cell, but also antibody vaccine development.

Medina-Ramírez M, Sanders RW, Sattentau QJ. 2017. Stabilized HIV-1 envelope glycoprotein trimers for vaccine use. Curr Opin HIV AIDS, 12 (3), pp. 241-249. | Show Abstract | Read more

PURPOSE OF REVIEW: To provide an update on the latest developments in the field of HIV-1 antibody-based soluble envelope glycoprotein (Env) trimer design for vaccine use. RECENT FINDINGS: The development of soluble native-like HIV-1 Env trimer immunogens has moved the field of antibody-based vaccine design forward dramatically over the past few years with refinement of various stabilizing approaches. However, despite this progress, significant challenges remain. Firstly, although trimers are relatively stable in solution, they nevertheless sample different conformational states, some of which may be less relevant to binding and induction of broadly neutralizing antibodies (bNAbs). Secondly, these trimers expose unwanted immunodominant surfaces that may distract the adaptive immune response from recognizing more immunorecessive but conserved neutralization-relevant surfaces on the trimer. The availability of atomic-resolution structural information has allowed guided design of mutations that have further stabilized trimers and allowed reduced exposure of unwanted epitopes. Moreover, chemical cross-linking approaches that do not require structural information have also contributed to trimer stabilization and selection of particular conformational forms. However, current knowledge suggests that strategies additional to trimer stabilization will be required to elicit bNAb, including targeting naïve B cell receptors with specific immunogens, and guiding B cell lineages toward recognizing conserved surfaces on Env with high affinity. SUMMARY: This review will give a perspective on these challenges, and summarize current approaches to overcoming them with the aim of developing immunogens to elicit bNAb responses in humans by active vaccination.

Medina-Ramírez M, Sanders RW, Sattentau QJ. 2017. Stabilized HIV-1 envelope glycoprotein trimers for vaccine use. Curr Opin HIV AIDS, | Show Abstract | Read more

PURPOSE OF REVIEW: To provide an update on the latest developments in the field of HIV-1 antibody-based soluble envelope glycoprotein (Env) trimer design for vaccine use. RECENT FINDINGS: The development of soluble native-like HIV-1 Env trimer immunogens has moved the field of antibody-based vaccine design forward dramatically over the past few years with refinement of various stabilizing approaches. However, despite this progress, significant challenges remain. Firstly, although trimers are relatively stable in solution, they nevertheless sample different conformational states, some of which may be less relevant to binding and induction of broadly neutralizing antibodies (bNAbs). Secondly, these trimers expose unwanted immunodominant surfaces that may distract the adaptive immune response from recognizing more immunorecessive but conserved neutralization-relevant surfaces on the trimer. The availability of atomic-resolution structural information has allowed guided design of mutations that have further stabilized trimers and allowed reduced exposure of unwanted epitopes. Moreover, chemical cross-linking approaches that do not require structural information have also contributed to trimer stabilization and selection of particular conformational forms. However, current knowledge suggests that strategies additional to trimer stabilization will be required to elicit bNAb, including targeting naïve B cell receptors with specific immunogens, and guiding B cell lineages toward recognizing conserved surfaces on Env with high affinity. SUMMARY: This review will give a perspective on these challenges, and summarize current approaches to overcoming them with the aim of developing immunogens to elicit bNAb responses in humans by active vaccination.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0.

Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, Padilla-Parra S, Sattentau QJ. 2017. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material. Cell Rep, 18 (6), pp. 1473-1483. | Show Abstract | Read more

HIV-1 disseminates to diverse tissues and establishes long-lived viral reservoirs. These reservoirs include the CNS, in which macrophage-lineage cells, and as suggested by many studies, astrocytes, may be infected. Here, we have investigated astrocyte infection by HIV-1. We confirm that astrocytes trap and internalize HIV-1 particles for subsequent release but find no evidence that these particles infect the cell. Astrocyte infection was not observed by cell-free or cell-to-cell routes using diverse approaches, including luciferase and GFP reporter viruses, fixed and live-cell fusion assays, multispectral flow cytometry, and super-resolution imaging. By contrast, we observed intimate interactions between HIV-1-infected macrophages and astrocytes leading to signals that might be mistaken for astrocyte infection using less stringent approaches. These results have implications for HIV-1 infection of the CNS, viral reservoir formation, and antiretroviral therapy.

Persson J, Zhang Y, Olafsdottir TA, Thörn K, Cairns TM, Wegmann F, Sattentau QJ, Eisenberg RJ, Cohen GH, Harandi AM. 2016. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs. Front Immunol, 7 (DEC), pp. 640. | Show Abstract | Read more

Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.

Gartlan KH, Krashias G, Wegmann F, Hillson WR, Scherer EM, Greenberg PD, Eisenbarth SC, Moghaddam AE, Sattentau QJ. 2016. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns. Vaccine, 34 (19), pp. 2188-2196. | Show Abstract | Read more

Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition.

Cited:

46

European Pubmed Central

Sattentau QJ, Stevenson M. 2016. Macrophages and HIV-1: An Unhealthy Constellation. Cell Host Microbe, 19 (3), pp. 304-310. | Show Abstract | Read more

Lentiviruses have a long-documented association with macrophages. Abundant evidence exists for in vitro and, in a tissue-specific manner, in vivo infection of macrophages by the primate lentiviruses HIV-1 and SIV. However, macrophage contribution to aspects of HIV-1 and SIV pathogenesis, and their role in viral persistence in individuals on suppressive antiretroviral therapy, remains unclear. Here we discuss recent evidence implicating macrophages in HIV-1-mediated disease and highlight directions for further investigation.

Cited:

42

WOS

Kabat AM, Harrison OJ, Riffelmacher T, Moghaddam AE, Pearson CF, Laing A, Abeler-Doerner L, Forman SP, Grencis RK, Sattentau Q et al. 2016. The autophagy gene Atg16I1 differentially regulates T-reg and T(H)2 cells to control intestinal inflammation ELIFE, 5 | Read more

Kabat AM, Harrison OJ, Riffelmacher T, Moghaddam AE, Pearson CF, Laing A, Abeler-Dörner L, Forman SP, Grencis RK, Sattentau Q et al. 2016. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife, 5 (FEBRUARY2016), pp. e12444. | Show Abstract | Read more

A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4(+) T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3(+) Treg cells. Specific ablation of Atg16l1 in Foxp3(+) Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders.

Schiffner T, de Val N, Russell RA, de Taeye SW, de la Peña AT, Ozorowski G, Kim HJ, Nieusma T, Brod F, Cupo A et al. 2016. Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J Virol, 90 (2), pp. 813-828. | Show Abstract | Read more

UNLABELLED: Major neutralizing antibody immune evasion strategies of the HIV-1 envelope glycoprotein (Env) trimer include conformational and structural instability. Stabilized soluble trimers such as BG505 SOSIP.664 mimic the structure of virion-associated Env but nevertheless sample different conformational states. Here we demonstrate that treating BG505 SOSIP.664 trimers with glutaraldehyde or a heterobifunctional cross-linker introduces additional stability with relatively modest effects on antigenicity. Thus, most broadly neutralizing antibody (bNAb) epitopes were preserved after cross-linking, whereas the binding of most weakly or nonneutralizing antibodies (non-NAb) was reduced. Cross-linking stabilized all Env conformers present within a mixed population, and individual conformers could be isolated by bNAb affinity chromatography. Both positive selection of cross-linked conformers using the quaternary epitope-specific bNAbs PGT145, PGT151, and 3BC315 and negative selection with non-NAbs against the V3 region enriched for trimer populations with improved antigenicity for bNAbs. Similar results were obtained using the clade B B41 SOSIP.664 trimer. The cross-linking method may, therefore, be useful for countering the natural conformational heterogeneity of some HIV-1 Env proteins and, by extrapolation, also vaccine immunogens from other pathogens. IMPORTANCE: The development of a vaccine to induce protective antibodies against HIV-1 is of primary public health importance. Recent advances in immunogen design have provided soluble recombinant envelope glycoprotein trimers with near-native morphology and antigenicity. However, these trimers are conformationally flexible, potentially reducing B-cell recognition of neutralizing antibody epitopes. Here we show that chemical cross-linking increases trimer stability, reducing binding of nonneutralizing antibodies while largely maintaining neutralizing antibody binding. Cross-linking followed by positive or negative antibody affinity selection of individual stable conformational variants further improved the antigenic and morphological characteristics of the trimers. This approach may be generally applicable to HIV-1 Env and also to other conformationally flexible pathogen antigens.

Wegmann F, Moghaddam AE, Schiffner T, Gartlan KH, Powell TJ, Russell RA, Baart M, Carrow EW, Sattentau QJ. 2015. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice. Clin Vaccine Immunol, 22 (9), pp. 1004-1012. | Show Abstract | Read more

The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8(+) T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines.

Cited:

110

Scopus

Zhou T, Lynch RM, Chen L, Acharya P, Wu X, Doria-Rose NA, Joyce MG, Lingwood D, Soto C, Bailer RT et al. 2015. Structural repertoire of HIV-1-neutralizing antibodies targeting the CD4 supersite in 14 donors Cell, 161 (6), pp. 1280-1292. | Show Abstract | Read more

© 2015 Elsevier Inc. The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.

Zhou T, Lynch RM, Chen L, Acharya P, Wu X, Doria-Rose NA, Joyce MG, Lingwood D, Soto C, Bailer RT et al. 2015. Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 161 (6), pp. 1280-1292. | Show Abstract | Read more

The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.

Cited:

33

Scopus

Sholukh AM, Watkins JD, Vyas HK, Gupta S, Lakhashe SK, Thorat S, Zhou M, Hemashettar G, Bachler BC, Forthal DN et al. 2015. Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: Complete protection of rhesus monkeys from mucosal SHIV challenge Vaccine, 33 (17), pp. 2086-2095. | Show Abstract | Read more

© 2015 Elsevier Ltd. Although IgA is the most abundantly produced immunoglobulin in humans, its role in preventing HIV-1 acquisition, which occurs mostly via mucosal routes, remains unclear. In our passive mucosal immunizations of rhesus macaques (RMs), the anti-HIV-1 neutralizing monoclonal antibody (nmAb) HGN194, given either as dimeric IgA1 (dIgA1) or dIgA2 intrarectally (i.r.), protected 83% or 17% of the RMs against i.r. simian-human immunodeficiency virus (SHIV) challenge, respectively. Data from the RV144 trial implied that vaccine-induced plasma IgA counteracted the protective effector mechanisms of IgG1 with the same epitope specificity. We thus hypothesized that mucosal dIgA2 might diminish the protection provided by IgG1 mAbs targeting the same epitope.To test our hypothesis, we administered HGN194 IgG1 intravenously (i.v.) either alone or combined with i.r. HGN194 dIgA2. We enrolled SHIV-exposed, persistently aviremic RMs protected by previously administered nmAbs; RM anti-human IgG responses were undetectable. However, low-level SIV Gag-specific proliferative T-cell responses were found. These animals resemble HIV-exposed, uninfected humans, in which local and systemic cellular immune responses have been observed.HGN194 IgG1 and dIgA2 used alone and the combination of the two neutralized the challenge virus equally well in vitro. All RMs given only i.v. HGN194 IgG1 became infected. In contrast, all RMs given HGN194 IgG1. +. dIgA2 were completely protected against high-dose i.r. SHIV-1157ipEL-p challenge. These data imply that combining suboptimal defenses at the mucosal and systemic levels can completely prevent virus acquisition. Consequently, active vaccination should focus on defense-in-depth, a strategy that seeks to build up defensive fall-back positions well behind the fortified frontline.

Bowles EJ, Schiffner T, Rosario M, Needham GA, Ramaswamy M, McGouran J, Kessler B, LaBranche C, McMichael AJ, Montefiori D et al. 2014. Comparison of neutralizing antibody responses elicited from highly diverse polyvalent heterotrimeric HIV-1 gp140 cocktail immunogens versus a monovalent counterpart in rhesus macaques. PLoS One, 9 (12), pp. e114709. | Show Abstract | Read more

Eliciting neutralizing antibodies capable of inactivating a broad spectrum of HIV-1 strains is a major goal of HIV-1 vaccine design. The challenge is that envelopes (Envs) of circulating viruses are almost certainly different from any Env used in a vaccine. A novel immunogen composed of a highly diverse set of gp140 Envs including subtypes A, B, C, D and F was developed to stimulate a more cross-neutralizing antibody response. Env heterotrimers composed of up to 54 different gp140s were produced with the aim of focusing the response to the conserved regions of Env while reducing the dominance of any individual hypervariable region. Heterotrimeric gp140 Envs of inter- and intra-subtype combinations were shown to bind CD4 and a panel of neutralizing monoclonal antibodies with similar affinity to monovalent UG37 gp140. Macaques immunized with six groups of heterotrimer mixtures showed slightly more potent neutralizing antibody responses in TZM-BL tier 1 and A3R5 tier 2 pseudovirus assays than macaques immunized with monovalent Env gp140, and exhibited a marginally greater focus on the CD4-binding site. Carbopol enhanced neutralization when used as an adjuvant instead of RIBI in combination with UG37 gp140. These data indicate that cross-subtype heterotrimeric gp140 Envs may elicit some improvement of the neutralizing antibody response in macaques compared to monovalent gp140 Env.

Baxter AE, Russell RA, Duncan CJA, Moore MD, Willberg CB, Pablos JL, Finzi A, Kaufmann DE, Ochsenbauer C, Kappes JC et al. 2014. Macrophage infection via selective capture of HIV-1-infected CD4+ T cells. Cell Host Microbe, 16 (6), pp. 711-721. | Show Abstract | Read more

Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir and mediating neurological disorders. Cell-free HIV-1 infection of macrophages is inefficient, in part due to low plasma membrane expression of viral entry receptors. We find that macrophages selectively capture and engulf HIV-1-infected CD4+ T cells leading to efficient macrophage infection. Infected T cells, both healthy and dead or dying, were taken up through viral envelope glycoprotein-receptor-independent interactions, implying a mechanism distinct from conventional virological synapse formation. Macrophages infected by this cell-to-cell route were highly permissive for both CCR5-using macrophage-tropic and otherwise weakly macrophage-tropic transmitted/founder viruses but restrictive for nonmacrophage-tropic CXCR4-using virus. These results have implications for establishment of the macrophage reservoir and HIV-1 dissemination in vivo.

Sholukh AM, Watkins JD, Vyas HK, Gupta S, Lakhashe SK, Thorat S, Zhou M, Hemashettar G, Bachler BC, Forthal DN et al. 2015. Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: complete protection of rhesus monkeys from mucosal SHIV challenge. Vaccine, 33 (17), pp. 2086-2095. | Show Abstract | Read more

Although IgA is the most abundantly produced immunoglobulin in humans, its role in preventing HIV-1 acquisition, which occurs mostly via mucosal routes, remains unclear. In our passive mucosal immunizations of rhesus macaques (RMs), the anti-HIV-1 neutralizing monoclonal antibody (nmAb) HGN194, given either as dimeric IgA1 (dIgA1) or dIgA2 intrarectally (i.r.), protected 83% or 17% of the RMs against i.r. simian-human immunodeficiency virus (SHIV) challenge, respectively. Data from the RV144 trial implied that vaccine-induced plasma IgA counteracted the protective effector mechanisms of IgG1 with the same epitope specificity. We thus hypothesized that mucosal dIgA2 might diminish the protection provided by IgG1 mAbs targeting the same epitope. To test our hypothesis, we administered HGN194 IgG1 intravenously (i.v.) either alone or combined with i.r. HGN194 dIgA2. We enrolled SHIV-exposed, persistently aviremic RMs protected by previously administered nmAbs; RM anti-human IgG responses were undetectable. However, low-level SIV Gag-specific proliferative T-cell responses were found. These animals resemble HIV-exposed, uninfected humans, in which local and systemic cellular immune responses have been observed. HGN194 IgG1 and dIgA2 used alone and the combination of the two neutralized the challenge virus equally well in vitro. All RMs given only i.v. HGN194 IgG1 became infected. In contrast, all RMs given HGN194 IgG1+dIgA2 were completely protected against high-dose i.r. SHIV-1157ipEL-p challenge. These data imply that combining suboptimal defenses at the mucosal and systemic levels can completely prevent virus acquisition. Consequently, active vaccination should focus on defense-in-depth, a strategy that seeks to build up defensive fall-back positions well behind the fortified frontline.

Schiffner T, Leonavicius K, Schuster H, Kim HJ, Kong L, Saliba R, Brod F, Wegmann F, Huang PS, Stewart-Jones GB et al. 2014. Refocussing antibody responses by chemical modification of vaccine antigens. AIDS Res Hum Retroviruses, 30 Suppl 1 (S1), pp. A66-A67. | Read more

Moghaddam AE, Hillson WR, Noti M, Gartlan KH, Johnson S, Thomas B, Artis D, Sattentau QJ. 2014. Dry roasting enhances peanut-induced allergic sensitization across mucosal and cutaneous routes in mice. J Allergy Clin Immunol, 134 (6), pp. 1453-1456. | Read more

Sheppard NC, Brinckmann SA, Gartlan KH, Puthia M, Svanborg C, Krashias G, Eisenbarth SC, Flavell RA, Sattentau QJ, Wegmann F. 2014. Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. Int Immunol, 26 (10), pp. 531-538. | Show Abstract | Read more

Polyethyleneimine (PEI) is an organic polycation used extensively as a gene and DNA vaccine delivery reagent. Although the DNA targeting activity of PEI is well documented, its immune activating activity is not. We recently reported that PEI has robust mucosal adjuvanticity when administered intranasally with glycoprotein antigens. Here, we show that PEI has strong immune activating activity after systemic delivery. PEI administered subcutaneously with viral glycoprotein (HIV-1 gp140) enhanced antigen-specific serum IgG production in the context of mixed Th1/Th2-type immunity. PEI elicited higher titers of both antigen binding and neutralizing antibodies than alum in mice and rabbits and induced an increased proportion of antibodies reactive with native antigen. In an intraperitoneal model, PEI recruited neutrophils followed by monocytes to the site of administration and enhanced antigen uptake by antigen-presenting cells. The Th bias was modulated by PEI activation of the Nlrp3 inflammasome; however its global adjuvanticity was unchanged in Nlrp3-deficient mice. When coformulated with CpG oligodeoxynucleotides, PEI adjuvant potency was synergistically increased and biased toward a Th1-type immune profile. Taken together, these data support the use of PEI as a versatile systemic adjuvant platform with particular utility for induction of secondary structure-reactive antibodies against glycoprotein antigens.

Sattentau QJ. 2014. Immunogen design to focus the B-cell repertoire. Curr Opin HIV AIDS, 9 (3), pp. 217-223. | Show Abstract | Read more

PURPOSE OF REVIEW: This review aims to bring together recent developments relevant to the design of HIV-1 envelope glycoprotein-based immunogens to elicit broadly neutralizing antibodies (bNAbs). RECENT FINDINGS: The combined use of structural biology and deep sequencing of antigen-specific B-cell lineages has allowed cross-sectional and longitudinal views of antibody evolution towards broad and potent neutralization of HIV-1. Recent advances in molecular modelling allied with protein and glycoprotein engineering have fuelled the design of new-generation viral envelope glycoproteins (Env)-based antigens. SUMMARY: Although proof-of-principle for vaccine elicitation of bNAbs to HIV-1 is still lacking, many of the conceptual hurdles are being addressed.

Duncan CJA, Williams JP, Schiffner T, Gärtner K, Ochsenbauer C, Kappes J, Russell RA, Frater J, Sattentau QJ. 2014. High-multiplicity HIV-1 infection and neutralizing antibody evasion mediated by the macrophage-T cell virological synapse. J Virol, 88 (4), pp. 2025-2034. | Show Abstract | Read more

Macrophage infection is considered to play an important role in HIV-1 pathogenesis and persistence. Using a primary cell-based coculture model, we show that monocyte-derived macrophages (MDM) efficiently transmit a high-multiplicity HIV-1 infection to autologous CD4(+) T cells through a viral envelope glycoprotein (Env) receptor- and actin-dependent virological synapse (VS), facilitated by interactions between ICAM-1 and LFA-1. Virological synapse (VS)-mediated transmission by MDM results in high levels of T cell HIV-1 integration and is 1 to 2 orders of magnitude more efficient than cell-free infection. This mode of cell-to-cell transmission is broadly susceptible to the activity of CD4 binding site (CD4bs) and glycan or glycopeptide epitope-specific broadly neutralizing monoclonal antibodies (bNMAbs) but shows resistance to bNMAbs targeting the Env gp41 subunit membrane-proximal external region (MPER). These data define for the first time the structure and function of the macrophage-to-T cell VS and have important implications for bNMAb activity in HIV-1 prophylaxis and therapy. IMPORTANCE The ability of HIV-1 to move directly between contacting immune cells allows efficient viral dissemination with the potential to evade antibody attack. Here, we show that HIV-1 spreads from infected macrophages to T cells via a structure called a virological synapse that maintains extended contact between the two cell types, allowing transfer of multiple infectious events to the T cell. This process allows the virus to avoid neutralization by a class of antibody targeting the gp41 subunit of the envelope glycoproteins. These results have implications for viral spread in vivo and the specificities of neutralizing antibody elicited by antibody-based vaccines.

Sattentau QJ. 2013. Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens. Vaccines (Basel), 1 (4), pp. 497-512. | Show Abstract | Read more

The HIV-1 envelope glycoprotein spike is the target of neutralizing antibody attack, and hence represents the only relevant viral antigen for antibody-based vaccine design. Various approaches have been attempted to recapitulate Env in membrane-anchored and soluble forms, and these will be discussed here in the context of recent successes and challenges still to be overcome.

Schiffner T, Sattentau QJ, Duncan CJA. 2013. Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies. Vaccine, 31 (49), pp. 5789-5797. | Show Abstract | Read more

Cell-to-cell spread of human immunodeficiency virus (HIV-1) between immune cells was first observed over 20 years ago. During this time, the question of whether this infection route favours viral evasion of neutralizing antibodies (NAbs) targeting the virus envelope glycoprotein (Env) has been repeatedly investigated, but with conflicting results. A clearer picture has formed in the last few years as more broadly neutralizing antibodies have been isolated and we gain further insight into the mechanisms of HIV-1 transmission at virological and infectious synapses. Nevertheless consensus is still lacking, a situation which may be at least partly explained by variability in the experimental approaches used to study the activity of NAbs in the cell-to-cell context. In this review we focus on the most critical question concerning the activity of NAbs against cell-to-cell transmission: is NAb inhibition of cell-to-cell HIV-1 quantitatively or qualitatively different from cell-free infection? Overall, data consistently show that NAbs are capable of blocking HIV-1 infection at synapses, supporting the concept that cell-to-cell infection occurs through directed transfer of virions accessible to the external environment. However, more recent findings suggest that higher concentrations of certain NAbs might be needed to inhibit synaptic infection, with important potential implications for prophylactic vaccine development. We discuss several mechanistic explanations for this relative and selective loss of activity, and highlight gaps in knowledge that are still to be explored.

Smalls-Mantey A, Connors M, Sattentau QJ. 2013. Comparative efficiency of HIV-1-infected T cell killing by NK cells, monocytes and neutrophils. PLoS One, 8 (9), pp. e74858. | Show Abstract | Read more

HIV-1 infected cells are eliminated in infected individuals by a variety of cellular mechanisms, the best characterized of which are cytotoxic T cell and NK cell-mediated killing. An additional antiviral mechanism is antibody-dependent cellular cytotoxicity. Here we use primary CD4(+) T cells infected with the BaL clone of HIV-1 as target cells and autologous NK cells, monocytes, and neutrophils as effector cells, to quantify the cytotoxicity mediated by the different effectors. This was carried out in the presence or absence of HIV-1-specific antiserum to assess antibody-dependent cellular cytotoxicity. We show that at the same effector to target ratio, NK cells and monocytes mediate similar levels of both antibody-dependent and antibody-independent killing of HIV-1-infected T cells. Neutrophils mediated significant antibody-dependent killing of targets, but were less effective than monocytes or NK cells. These data have implications for acquisition and control of HIV-1 in natural infection and in the context of vaccination.

Duncan CJA, Russell RA, Sattentau QJ. 2013. High multiplicity HIV-1 cell-to-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy. AIDS, 27 (14), pp. 2201-2206. | Show Abstract | Read more

OBJECTIVE: Few studies have examined the efficacy of antiretroviral therapy (ART) in the context of cell-to-cell transmission. We aimed to determine whether the activity of ART is limited by the mode of HIV-1 spread between cells and the type of immune cell implicated in transmission, or is independent of these variables. DESIGN: ART activity was evaluated in primary cells using in-vitro cell-free and cell to-cell HIV-1 infection systems. METHODS: HIV-1 cell-free or cell-to-cell transmission between infected monocyte-derived macrophages (MDMs) and autologous target CD4+ T cells was measured in the presence or absence of reverse transcriptase and integrase inhibitors. Viral infection was evaluated using luciferase-reporter infectious molecular HIV-1 clones carrying macrophage-tropic envelope glycoproteins (Envs). Cell-free HIV-1 was titrated to yield different multiplicities of CD4+ T-cell infection. RESULTS: Whereas cell-free infection of CD4+ T cells was substantially reduced by all inhibitors, cell-to-cell spread from macrophages to CD4+ T cells was largely resistant to inhibition. However, when multiplicity of infection was controlled for, we observed no difference in antiretroviral inhibition of cell-to-cell or cell-free infection. CONCLUSION: Cell-to-cell spread of HIV-1 reduces the probability of antiretroviral inhibition, but it is the number of infectious viruses transferred between cells rather than the specific mode of viral spread or transmitting cell type that governs antiretroviral activity. High multiplicity infection in vivo is more likely to occur by cell-to-cell transmission, and these data will inform use of ART against viral reservoirs.

Jolly CL, Sattentau QJ. 2013. Attachment factors. Adv Exp Med Biol, 790 pp. 1-23. | Show Abstract | Read more

As obligate intracellular parasites, viruses must bind to, and enter, permissive host cells in order to gain access to the cellular machinery that is required for their replication. The very large number of mammalian viruses identified to date is reflected in the fact that almost every human and animal cell type is a target for infection by one, or commonly more than one, species of virus. As viruses have adapted to target certain cell types for their propagation, there is exquisite specificity in cellular tropism. This specificity is frequently, but not always, mediated by the first step in the viral replication cycle: attachment of viral surface proteins to receptors expressed on susceptible cells. Viral receptors may be protein, carbohydrate, and/or lipid. Many viruses can use more than one attachment receptor, and indeed may sequentially engage multiple receptors to infect a cell. Thus, it is useful to differentiate between attachment receptors, that simply allow viruses a foothold at the limiting membrane of a cell, and entry receptors that mediate delivery the viral genome into the cytoplasm. For some viruses the attachment factors that promote binding to permissive cells are very well defined, but the sequence of events that triggers viral entry is only now beginning to be understood. For other viruses, despite many efforts, the receptors remain elusive. In this chapter we will confine our review to viruses that infect mammals, with particular focus on human pathogens. We do not intend that this will be an exhaustive overview of viral attachment receptors; instead we will take a number of examples of well-characterized virus-receptor interactions, discuss supporting evidence, and highlight any controversies and uncertainties in the field. We will then conclude with a reflection on general principles of viral attachment, consider some exceptions to these principles, and make some suggestion for future research.

Cited:

28

Scopus

Russell RA, Martin N, Mitar I, Jones E, Sattentau QJ. 2013. Multiple proviral integration events after virological synapse-mediated HIV-1 spread Virology, 443 (1), pp. 143-149. | Show Abstract | Read more

HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. © 2013 .

Noti M, Wojno EDT, Kim BS, Siracusa MC, Giacomin PR, Nair MG, Benitez AJ, Ruymann KR, Muir AB, Hill DA et al. 2013. Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med, 19 (8), pp. 1005-1013. | Show Abstract | Read more

Eosinophilic esophagitis (EoE) is a food allergy-associated inflammatory disease characterized by esophageal eosinophilia. Current management strategies for EoE are nonspecific, and thus there is a need to identify specific immunological pathways that could be targeted to treat this disease. EoE is associated with polymorphisms in the gene that encodes thymic stromal lymphopoietin (TSLP), a cytokine that promotes allergic inflammation, but how TSLP might contribute to EoE disease pathogenesis has been unclear. Here, we describe a new mouse model of EoE-like disease that developed independently of IgE, but was dependent on TSLP and basophils, as targeting TSLP or basophils during the sensitization phase limited disease. Notably, therapeutic TSLP neutralization or basophil depletion also ameliorated established EoE-like disease. In human subjects with EoE, we observed elevated TSLP expression and exaggerated basophil responses in esophageal biopsies, and a gain-of-function TSLP polymorphism was associated with increased basophil responses in patients with EoE. Together, these data suggest that the TSLP-basophil axis contributes to the pathogenesis of EoE and could be therapeutically targeted to treat this disease.

Schiffner T, Sattentau QJ, Dorrell L. 2013. Development of prophylactic vaccines against HIV-1. Retrovirology, 10 (1), pp. 72. | Show Abstract | Read more

The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.

Cited:

28

European Pubmed Central

Schiffner T, Kong L, Duncan CJA, Back JW, Benschop JJ, Shen X, Huang PS, Stewart-Jones GB, DeStefano J, Seaman MS et al. 2013. Immune focusing and enhanced neutralization induced by HIV-1 gp140 chemical cross-linking. J Virol, 87 (18), pp. 10163-10172. | Show Abstract | Read more

Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design.

Tan J, Sattentau QJ. 2013. The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol, 21 (8), pp. 405-412. | Show Abstract | Read more

Macrophages are a major target of HIV-1 infection and are believed to act as viral reservoirs and mediators of HIV-1-associated neurological damage. These pathological roles may be associated with the ability of the virus to assemble and accumulate in apparently intracellular compartments in macrophages. These so-called virus-containing compartments were initially thought to be late endosomes or multivesicular bodies, but it has since been shown that they are distinct structures that have complex three-dimensional morphology, a unique set of protein markers, and features such as a near-neutral pH and frequent connections to the extracellular milieu. These features appear to protect HIV-1 from hostile elements both within and outside the cell. This review discusses the cellular and molecular characteristics of HIV-1-containing compartments in macrophages and how they offer a safe haven for the virus, with important consequences for pathogenesis.

Watkins JD, Sholukh AM, Mukhtar MM, Siddappa NB, Lakhashe SK, Kim M, Reinherz EL, Gupta S, Forthal DN, Sattentau QJ et al. 2013. Anti-HIV IgA isotypes: differential virion capture and inhibition of transcytosis are linked to prevention of mucosal R5 SHIV transmission. AIDS, 27 (9), pp. F13-F20. | Show Abstract | Read more

OBJECTIVE: Although passive immunization with anti-HIV-1 Env IgG1 neutralizing monoclonal antibodies (nmAbs) prevented simian-human immunodeficiency virus (SHIV) infection in rhesus monkeys, IgA nmAbs have not been tested. Here, we sought to determine whether human anti-HIV-1 dimeric (d)IgA1, dIgA2, and IgG1 differ in their ability to prevent mucosal R5 SHIV acquisition in rhesus monkeys. DESIGN: DIgA1, dIgA2, and IgG1 versions of nmAb HGN194 were applied intrarectally in three rhesus monkey groups 30 min before intrarectal SHIV challenge. METHODS: After a control pharmacokinetic study confirmed that nmAb concentrations in rectal fluids over time were similar for all HGN194 isotypes, control and nmAb-treated animals were challenged intrarectally with an R5 SHIV, and viral loads were monitored. RESULTS: Unexpectedly, dIgA1 provided the best protection in vivo--although all nmAbs showed similar neutralizing activity in vitro. Five out of the six dIgA1-treated rhesus monkeys remained virus-free compared to only one out of six animals given dIgA2 (P=0.045 by log-rank test) and two out of six rhesus monkeys treated with IgG1 forms of the nmAb (P=0.12). Protection correlated significantly with virion capture activity by a given nmAb form, as well as inhibition of transcytosis of cell-free virus across an epithelial cell layer in vitro. CONCLUSIONS: Our data imply that dIgA1-mediated capturing of virions in mucosal secretions and inhibition of transcytosis can provide significant prevention of lentiviral acquisition--over and above direct virus neutralization. Vaccine strategies that induce mucosal IgA, especially IgA1, should be developed as a first line of defense against HIV-1, a virus predominantly transmitted mucosally.

Russell RA, Martin N, Mitar I, Jones E, Sattentau QJ. 2013. Multiple proviral integration events after virological synapse-mediated HIV-1 spread. Virology, 443 (1), pp. 143-149. | Show Abstract | Read more

HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection.

Cited:

33

Scopus

Kong L, J Sattentau Q. 2012. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design Journal of AIDS & Clinical Research, 01 (S8), | Show Abstract | Read more

Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today's rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. © 2012 Kong L, et al.

Wegmann F, Gartlan KH, Harandi AM, Brinckmann SA, Coccia M, Hillson WR, Kok WL, Cole S, Ho L-P, Lambe T et al. 2012. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nat Biotechnol, 30 (9), pp. 883-888. | Show Abstract | Read more

Protection against mucosally transmitted infections probably requires immunity at the site of pathogen entry, yet there are no mucosal adjuvant formulations licensed for human use. Polyethyleneimine (PEI) represents a family of organic polycations used as nucleic acid transfection reagents in vitro and DNA vaccine delivery vehicles in vivo. Here we show that diverse PEI forms have potent mucosal adjuvant activity for viral subunit glycoprotein antigens. A single intranasal administration of influenza hemagglutinin or herpes simplex virus type-2 (HSV-2) glycoprotein D with PEI elicited robust antibody-mediated protection from an otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen, which were taken up by antigen-presenting cells in vitro and in vivo, promoted dendritic cell trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host double-stranded DNA that triggered Irf3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use.

Heyndrickx L, Heath A, Sheik-Khalil E, Alcami J, Bongertz V, Jansson M, Malnati M, Montefiori D, Moog C, Morris L et al. 2012. International network for comparison of HIV neutralization assays: the NeutNet report II. PLoS One, 7 (5), pp. e36438. | Show Abstract | Read more

BACKGROUND: Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). METHODS: In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. FINDINGS: Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. CONCLUSIONS: Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation.

Duncan CJA, Russell RA, Baxter AE, McMichael AJ, Sattentau QJ. 2012. Phagocytic uptake of transmitted/founder virus-infected CD4+T cells enhances macrophage infection HIV MEDICINE, 13 pp. 29-29.

Cited:

26

European Pubmed Central

Lai RPJ, Seaman MS, Tonks P, Wegmann F, Seilly DJ, Frost SDW, LaBranche CC, Montefiori DC, Dey AK, Srivastava IK et al. 2012. Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund's adjuvants. PLoS One, 7 (4), pp. e35083. | Show Abstract | Read more

Adjuvant formulations capable of inducing high titer and high affinity antibody responses would provide a major advance in the development of vaccines to viral infections such as HIV-1. Although oil-in-water emulsions, such as Freund's adjuvant (FCA/FIA), are known to be potent, their toxicity and reactogenicity make them unacceptable for human use. Here, we explored different adjuvants and compared their ability to elicit antibody responses to FCA/FIA. Recombinant soluble trimeric HIV-1 gp140 antigen was formulated in different adjuvants, including FCA/FIA, Carbopol-971P, Carbopol-974P and the licensed adjuvant MF59, or combinations of MF59 and Carbopol. The antigen-adjuvant formulation was administered in a prime-boost regimen into rabbits, and elicitation of antigen binding and neutralizing antibodies (nAbs) was evaluated. When used individually, only FCA/FIA elicited significantly higher titer of nAbs than the control group (gp140 in PBS (p<0.05)). Sequential prime-boost immunizations with different adjuvants did not offer improvements over the use of FCA/FIA or MF59. Remarkably however, the concurrent use of the combination of Carbopol-971P and MF59 induced potent adjuvant activity with significantly higher titer nAbs than FCA/FIA (p<0.05). This combination was not associated with any obvious local or systemic adverse effects. Antibody competition indicated that the majority of the neutralizing activities were directed to the CD4 binding site (CD4bs). Increased antibody titers to the gp41 membrane proximal external region (MPER) and gp120 V3 were detected when the more potent adjuvants were used. These data reveal that the combination of Carbopol-971P and MF59 is unusually potent for eliciting nAbs to a variety of HIV-1 nAb epitopes.

Cited:

23

European Pubmed Central

Kong L, Sattentau QJ. 2012. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design. J AIDS Clin Res, S8 pp. 3. | Show Abstract | Read more

Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today's rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome.

Sattentau QJ. 2011. Vaccinology: A sweet cleft in HIV's armour. Nature, 480 (7377), pp. 324-325. | Read more

Sattentau QJ. 2011. The direct passage of animal viruses between cells. Curr Opin Virol, 1 (5), pp. 396-402. | Show Abstract | Read more

The paradigm that viruses can move directly, and in some cases covertly, between contacting target cells is now well established for several virus families. The underlying mechanisms of cell-to-cell spread, however, remain to be fully elucidated and may differ substantially depending on the viral exit/entry route and the cellular tropism. Here, two divergent cell-to-cell spread mechanisms are exemplified: firstly by human retroviruses, which rely upon transient adhesive structures that form between polarized immune cells termed virological synapses, and secondly by herpesviruses that depend predominantly on pre-existing stable cellular contacts, but may also form virological synapses. Plant viruses can also spread directly between contacting cells, but are obliged by the rigid host cell wall to move across pore structures termed plasmodesmata. This review will focus primarily on recent advances in our understanding of animal virus cell-to-cell spread using examples from these two virus families, and will conclude by comparing and contrasting the cell-to-cell spread of animal and plant viruses.

Duncan CJA, Sattentau QJ. 2011. Viral determinants of HIV-1 macrophage tropism. Viruses, 3 (11), pp. 2255-2279. | Show Abstract | Read more

Macrophages are important target cells for HIV-1 infection that play significant roles in the maintenance of viral reservoirs and other aspects of pathogenesis. Understanding the determinants of HIV-1 tropism for macrophages will inform HIV-1 control and eradication strategies. Tropism for macrophages is both qualitative (infection or not) and quantitative (replication capacity). For example many R5 HIV-1 isolates cannot infect macrophages, but for those that can the macrophage replication capacity can vary by up to 1000-fold. Some X4 viruses are also capable of replication in macrophages, indicating that cellular tropism is partially independent of co-receptor preference. Preliminary data obtained with a small number of transmitted/founder viruses indicate inefficient macrophage infection, whereas isolates from later in disease are more frequently tropic for macrophages. Thus tropism may evolve over time, and more macrophage tropic viruses may be implicated in the pathogenesis of advanced HIV-1 infection. Compartmentalization of macrophage-tropic brain-derived envelope glycoproteins (Envs), and non-macrophage tropic non-neural tissue-derived Envs points to adaptation of HIV-1 quasi-species in distinct tissue microenvironments. Mutations within and adjacent to the Env-CD4 binding site have been identified that determine macrophage tropism at the entry level, but post-entry molecular determinants of macrophage replication capacity involving HIV-1 accessory proteins need further definition.

Pruzina S, Williams GT, Kaneva G, Davies SL, Martin-Lopez A, Brueggemann M, Vieira SM, Jeffs SA, Sattentau QJ, Neuberger MS. 2011. Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci PROTEIN ENGINEERING DESIGN & SELECTION, 24 (10), pp. 791-799. | Read more

Jolly C, Welsch S, Michor S, Sattentau QJ. 2011. The regulated secretory pathway in CD4(+) T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse. PLoS Pathog, 7 (9), pp. e1002226. | Show Abstract | Read more

Direct cell-cell spread of Human Immunodeficiency Virus type-1 (HIV-1) at the virological synapse (VS) is an efficient mode of dissemination between CD4(+) T cells but the mechanisms by which HIV-1 proteins are directed towards intercellular contacts is unclear. We have used confocal microscopy and electron tomography coupled with functional virology and cell biology of primary CD4(+) T cells from normal individuals and patients with Chediak-Higashi Syndrome and report that the HIV-1 VS displays a regulated secretion phenotype that shares features with polarized secretion at the T cell immunological synapse (IS). Cell-cell contact at the VS re-orientates the microtubule organizing center (MTOC) and organelles within the HIV-1-infected T cell towards the engaged target T cell, concomitant with polarization of viral proteins. Directed secretion of proteins at the T cell IS requires specialized organelles termed secretory lysosomes (SL) and we show that the HIV-1 envelope glycoprotein (Env) localizes with CTLA-4 and FasL in SL-related compartments and at the VS. Finally, CD4(+) T cells that are disabled for regulated secretion are less able to support productive cell-to-cell HIV-1 spread. We propose that HIV-1 hijacks the regulated secretory pathway of CD4(+) T cells to enhance its dissemination.

Pruzina S, Williams GT, Kaneva G, Davies SL, Martín-López A, Brüggemann M, Vieira SM, Jeffs SA, Sattentau QJ, Neuberger MS. 2011. Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci. Protein Eng Des Sel, 24 (10), pp. 791-799. | Show Abstract | Read more

Mice carrying human immunoglobulin transloci were immunised with HIV-1 gp140 antigen to gain insight into the range and nature of human monoclonal antibodies (mAbs) that can be elicited from such humanised mice. Using five-feature mice that harbour YAC-based germline-configuration human IgM, Igκ and Igλ transloci in a mouse background disrupted for endogenous mouse IgH and Igκ expression, gp140-specific human IgM mAbs were readily elicited following serial immunisation. These mAbs were converted to human IgG1 format and were found to bind diverse epitopes within gp140, exhibiting high functional affinity for the antigen-typically in the nanomolar or sub-nanomolar range. The number of specific, stable hybridomas per mouse was, however, low (typically around five) with the hybridomas within individual mice often being clonally related. Nevertheless, different mice used B cell clones expressing varied V(D)J combinations, with affinity maturation through somatic hypermutation making a critical contribution. Thus, a wide range of distinct high-affinity mAbs can be obtained by immunising multiple animals. The results confirm the utility of the translocus-mouse approach and give insight into strategies for possible future improvement.

Moghaddam AE, Gartlan KH, Kong L, Sattentau QJ. 2011. Reactive carbonyls are a major Th2-inducing damage-associated molecular pattern generated by oxidative stress. J Immunol, 187 (4), pp. 1626-1633. | Show Abstract | Read more

Oxidative stress is widespread and entwined with pathological processes, yet its linkage to adaptive immunity remains elusive. Reactive carbonyl (RC) adduction, a common feature of oxidative stress, has been shown to target proteins to the adaptive immune system. Because aldehydes are important mediators of carbonylation, we explored the immunomodulatory properties of model Ags modified by common bioactive aldehyde by-products of oxidative stress: 4-hydroxy-2-nonenal, malondialdehyde, and glycolaldehyde. Ag modification with all three aldehydes resulted in Ag-specific IgG1-dominated responses in adjuvant-free murine immunizations in an RC-dependent manner. The central role of RCs was confirmed, as their reduction into nonreactive groups abrogated all adaptive responses, despite the presence of other well-known aldehyde-driven adducts such as N(ε)-carboxymethyllysine and glycolaldehyde-pyridine. Moreover, Ag-specific Ab responses robustly correlated with the extent of RC adduction, regardless of the means of their generation. T cell responses mirrored the Th2-biased Ab isotypes by Ag-specific splenocyte production of IL-4, IL-5, and IL-13, but not IFN-γ. The RC-induced Th2 response was in sharp contrast to that induced by Th1/Th2 balanced or Th1-biasing adjuvants and was maintained in a range of mouse strains. In vitro studies revealed that RC adduction enhanced Ag presentation with Th2 polarization in the absence of conventional dendritic cell activation. Taken together, these data implicate commonly occurring RC as an important oxidation-derived Th2 immunomodulatory damage-associated molecular pattern with potentially important roles in health and disease.

Welsch S, Groot F, Kräusslich H-G, Keppler OT, Sattentau QJ. 2011. Architecture and regulation of the HIV-1 assembly and holding compartment in macrophages. J Virol, 85 (15), pp. 7922-7927. | Show Abstract | Read more

Productive infection of macrophages is central to HIV-1 pathogenesis. Newly formed virions bud into a tubular membranous compartment that is contiguous with the plasma membrane. However, little is known about the structure of this compartment and its potential regulation by infection. Here we characterized this compartment in macrophages using electron tomography and electron microscopy with stereology. We found an intricate, interconnected membrane network that constitutes a preexisting physiologic structure in macrophages but which expands in size upon HIV-1 infection. Membranes required for this expansion were apparently derived from preexisting pools of plasma membrane. Physical connections between this compartment and the extracellular milieu were frequently made by tube-like structures of insufficient diameter for virion passage. We conclude that HIV-1 induces the expansion of a complex membranous labyrinth in macrophages in which the virus buds and can be retained, with potential consequences for transmission and immune evasion.

Wegmann F, Krashias G, Lühn K, Laamanen K, Vieira S, Jeffs SA, Shattock RJ, Sattentau QJ. 2011. A novel strategy for inducing enhanced mucosal HIV-1 antibody responses in an anti-inflammatory environment. PLoS One, 6 (1), pp. e15861. | Show Abstract | Read more

Prophylactic vaccination against HIV-1 sexual transmission will probably require antibody elicitation at genital mucosal surfaces. However, HIV-1 envelope glycoprotein (Env)-based antigens are weakly immunogenic, particularly when applied mucosally. The polyanion PRO 2000 is safe for human vaginal application, and thus may represent a potential formulating agent for vaginal delivery of experimental vaccine immunogens. Based upon its biochemical properties, we hypothesized that PRO 2000 might enhance mucosal immunogenicity of HIV-1 envelope glycoprotein (Env)-based antigens, promoting local and systemic immune responses. Vaginal immunization with Env-PRO 2000 resulted in significantly increased titres of Env-specific mucosal IgA and IgG in mice and rabbits, respectively, compared to Env alone, revealing modest but significant mucosal adjuvant activity for PRO 2000. In vitro, PRO 2000 associated with Env, protecting the glycoprotein from proteolytic degradation in human vaginal lavage. Unexpectedly, PRO 2000 antagonized TLR4 activation, suppressing local production of inflammatory cytokines. Since inflammation-mediated recruitment of viral target cells is a major risk factor in HIV-1 transmission, the immune modulatory and anti-inflammatory activities of PRO 2000 combined with its intravaginal safety profile suggests promise as an HIV-1 mucosal vaccine formulating agent.

Arias MA, Loxley A, Eatmon C, Van Roey G, Fairhurst D, Mitchnick M, Dash P, Cole T, Wegmann F, Sattentau Q, Shattock R. 2011. Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine, 29 (6), pp. 1258-1269. | Show Abstract | Read more

Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates.

Sattentau QJ, McMichael AJ. 2010. The Literature SCIENTIST, 24 (10), pp. 65-66.

Kong L, Sheppard NC, Stewart-Jones GBE, Robson CL, Chen H, Xu X, Krashias G, Bonomelli C, Scanlan CN, Kwong PD et al. 2010. Expression-system-dependent modulation of HIV-1 envelope glycoprotein antigenicity and immunogenicity. J Mol Biol, 403 (1), pp. 131-147. | Show Abstract | Read more

Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.

Sattentau QJ. 2010. Cell-to-Cell Spread of Retroviruses. Viruses, 2 (6), pp. 1306-1321. | Show Abstract | Read more

Viruses from several families use direct cell-to-cell infection to disseminate between cells. Retroviruses are a relatively recent addition to this list, and appear to spread cell-to-cell by induction of multimolecular complexes termed virological synapses that assemble at the interface between infected and receptor-expressing target cells. Over the past five years, detailed insight into the cellular and molecular basis of virological synapse-mediated retroviral cell-to-cell spread has been obtained, but important questions and controversies have been raised that remain to be resolved. This review will focus on recent advances in the field with emphasis on areas in which work still needs to be done.

Sattentau QJ. 2010. Retroviruses and the third synapse. Viruses, 2 (4), pp. 1008-1010. | Read more

González N, Bermejo M, Calonge E, Jolly C, Arenzana-Seisdedos F, Pablos JL, Sattentau QJ, Alcamí J. 2010. SDF-1/CXCL12 production by mature dendritic cells inhibits the propagation of X4-tropic HIV-1 isolates at the dendritic cell-T-cell infectious synapse. J Virol, 84 (9), pp. 4341-4351. | Show Abstract | Read more

An efficient mode of HIV-1 infection of CD4 lymphocytes occurs in the context of infectious synapses, where dendritic cells (DCs) enhance HIV-1 transmission to lymphocytes. Emergence of CXCR4-using (X4) HIV-1 strains occurs late in the course of HIV-1 infection, suggesting that a selective pressure suppresses the switch from CCR5 (R5) to X4 tropism. We postulated that SDF-1/CXCL12 chemokine production by DCs could be involved in this process. We observed CXCL12 expression by DCs in vivo in the parafollicular compartment of lymph nodes. The role of mature monocyte-derived dendritic cells (mMDDCs) in transmitting R5 and X4 HIV-1 strains to autologous lymphocytes was studied using an in vitro infection system. Using this model, we observed a strong enhancement of lymphocyte infection with R5, but not with X4, viruses. This lack of DC-mediated enhancement in the propagation of X4 viruses was proportional to CXCL12 production by mMDDCs. When CXCL12 activity was inhibited with specific neutralizing antibodies or small interfering RNAs (siRNAs), the block to mMDDC transfer of X4 viruses to lymphocytes was removed. These results suggest that CXCL12 production by DCs resident in lymph nodes represents an antiviral mechanism in the context of the infectious synapse that could account for the delayed appearance of X4 viruses.

Krashias G, Simon A-K, Wegmann F, Kok W-L, Ho L-P, Stevens D, Skehel J, Heeney JL, Moghaddam AE, Sattentau QJ. 2010. Potent adaptive immune responses induced against HIV-1 gp140 and influenza virus HA by a polyanionic carbomer. Vaccine, 28 (13), pp. 2482-2489. | Show Abstract | Read more

Carbopol is a polyanionic carbomer gel used in man for a variety of topical applications and drug delivery purposes. Here we show that subcutaneous administration of carbopol with glycoprotein antigens elicits unusually strong specific adaptive immune responses in mice. Recombinant soluble HIV-1 envelope glycoprotein (Env)-based antigen formulated in carbopol was at least as potent at stimulating Env-specific B and T cell responses as Freund's Complete Adjuvant, and significantly more potent than aluminium salts. The antigen-specific T cell immune response elicited both Th1 and Th2 cytokines including high titers of IFN-gamma, IL-2 and IL-4, and drove a Th1 isotype-switched antibody response. Mice immunized with a low dose of purified influenza HA in carbopol generated high titers of anti-HA antibodies and were protected from lethal challenge and disease with live virus. Similarly, immunization of mice with the melanoma cell line B16F10 formulated in carbopol significantly delayed tumor growth. We propose that carbopol, or related cross-linked polyacrylic acid analogues, may have promise for use as systemic vaccine adjuvants in man.

Martin N, Welsch S, Jolly C, Briggs JAG, Vaux D, Sattentau QJ. 2010. Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J Virol, 84 (7), pp. 3516-3527. | Show Abstract | Read more

Human immunodeficiency virus type 1 (HIV-1) can disseminate between CD4(+) T cells via diffusion-limited cell-free viral spread or by directed cell-cell transfer using virally induced structures termed virological synapses. Although T-cell virological synapses have been well characterized, it is unclear whether this mode of viral spread is susceptible to inhibition by neutralizing antibodies and entry inhibitors. We show here that both cell-cell and cell-free viral spread are equivalently sensitive to entry inhibition. Fluorescence imaging analysis measuring virological synapse lifetimes and inhibitor time-of-addition studies implied that inhibitors can access preformed virological synapses and interfere with HIV-1 cell-cell infection. This concept was supported by electron tomography that revealed the T-cell virological synapse to be a relatively permeable structure. Virological synapse-mediated HIV-1 spread is thus efficient but is not an immune or entry inhibitor evasion mechanism, a result that is encouraging for vaccine and drug design.

Cited:

46

Scopus

Kong L, Sheppard NC, Stewart-Jones GBE, Robson CL, Chen H, Xu X, Krashias G, Bonomelli C, Scanlan CN, Kwong PD et al. 2010. Expression-System-Dependent Modulation of HIV-1 Envelope Glycoprotein Antigenicity and Immunogenicity Journal of Molecular Biology, 403 (1), pp. 131-147. | Show Abstract | Read more

Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle™ cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic™), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use. © 2010 Elsevier Ltd.

Sattentau QJ, McMichael AJ. 2010. New templates for HIV-1 antibody-based vaccine design F1000 Biology Reports, 2 (1), | Show Abstract | Read more

A current strategy for the design of neutralizing antibody-based vaccines to prevent HIV-1 transmission is that of reverse engineering, starting from a neutralizing antibody and working back to reconstruct its epitope by structure-based design technology. However, the field has been impeded by a lack of appropriate antibodies for use as templates. Recently, new antibodies have been described that may fulfil this role, invigorating the field. © 2010 Faculty of 1000 Ltd.

Sattentau QJ, McMichael AJ. 2010. New templates for HIV-1 antibody-based vaccine design. F1000 Biol Rep, 2 pp. 60. | Show Abstract | Read more

A current strategy for the design of neutralizing antibody-based vaccines to prevent HIV-1 transmission is that of reverse engineering, starting from a neutralizing antibody and working back to reconstruct its epitope by structure-based design technology. However, the field has been impeded by a lack of appropriate antibodies for use as templates. Recently, new antibodies have been described that may fulfil this role, invigorating the field.

Corti D, Langedijk JPM, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM, Silacci C, Pinna D, Jarrossay D, Balla-Jhagjhoorsingh S et al. 2010. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One, 5 (1), pp. e8805. | Show Abstract | Read more

BACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.

Scarlatti G, Alcami J, Bongertz V, Fenyö E, Heath A, Heyndrickx L, Holmes H, Jansson M, Lopalco L, Malnati M et al. 2009. P04-18. Comparison of HIV neutralization assays for use in vaccine research and clinical trials, phase II: Results from the NeutNet working group Retrovirology, 6 (SUPPL. 3), | Read more

Martin N, Sattentau Q. 2009. Cell-to-cell HIV-1 spread and its implications for immune evasion. Curr Opin HIV AIDS, 4 (2), pp. 143-149. | Show Abstract | Read more

PURPOSE OF REVIEW: The ability of HIV-1 to move between cells via direct cell-cell transmission is currently receiving a lot of attention. This review will discuss cell-cell spread of HIV-1 in terms of cellular and molecular mechanisms and will consider the evidence for immune and therapeutic evasion. RECENT FINDINGS: Recent studies relating to the cell biology of HIV-1 cell-cell spread have sparked considerable renewed interest in the field. However, questions are being raised concerning both the mechanisms of viral spread between immune cells and the implications for immune evasion. SUMMARY: The re-emergence of HIV-1 cell-cell spread as a highly efficient mechanism for viral dissemination in vitro has raised the possibility that this finding may be central to viral spread in vivo and may strongly influence pathogenesis.

McCormack S, Taylor D, Richardson B, Darbyshire J, Sattentau Q, Karim QA, Karim SSA, Kharsany A, Lacey C, Nunn A, Weber J. 2009. Re: "Enhancement of HIV infection by cellulose sulfate," by Tao et al. AIDS Res Hum Retroviruses, 25 (3), pp. 373. | Read more

Scarlatti G, Alcami J, Bongertz V, Fenyo E, Heath A, Heyndrickx L, Holmes H, Jansson M, Lopalco L, Malnati M et al. 2009. Comparison of HIV neutralization assays for use in vaccine research and clinical trials, phase II: results from the NeutNet working group RETROVIROLOGY, 6 (Suppl 3), pp. P46-P46. | Read more

Romer D, Brighty DW, Robson CL, Sattentau QJ. 2009. Candidate polyanionic microbicides inhibit human T-cell lymphotropic virus type 1 receptor interactions, cell-free infection, and cell-cell spread. Antimicrob Agents Chemother, 53 (2), pp. 678-687. | Show Abstract | Read more

The human T-cell lymphotropic virus type 1 (HTLV-1) is the cause of adult T-cell leukemia and inflammatory diseases including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 can be transmitted through sexual contact, mother-to-child transmission, and exposure to contaminated blood. Microbicides are agents that interfere with microbial infectivity at mucous membranes, and candidates are under development for use against sexually transmitted viruses such as human immunodeficiency virus type 1. We previously demonstrated that cell surface polyanionic heparan sulfate proteoglycans bind the HTLV-1 envelope glycoprotein surface subunit gp46, facilitating cell-cell and cell-free virus spread in vitro. We now show, using assays for Env-receptor binding inhibition, Env-induced cell-cell fusion, cell-cell virus spread, and pseudotype HTLV-1 infectivity, that the soluble polyanions PRO 2000 and dextran sulfate are potent inhibitors of HTLV-1 spread in vitro, with PRO 2000 being the more promising candidate. The results of these studies suggest that candidate topical microbicides may be of use in reducing HTLV-1 sexual transmission.

Fenyö EM, Heath A, Dispinseri S, Holmes H, Lusso P, Zolla-Pazner S, Donners H, Heyndrickx L, Alcami J, Bongertz V et al. 2009. International network for comparison of HIV neutralization assays: the NeutNet report. PLoS One, 4 (2), pp. e4505. | Show Abstract | Read more

BACKGROUND: Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. METHODS: Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. FINDINGS: PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. CONCLUSIONS: The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation.

Sattentau Q. 2008. Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol, 6 (11), pp. 815-826. | Show Abstract | Read more

The initial stages of animal virus infection are generally described as the binding of free virions to permissive target cells followed by entry and replication. Although this route of infection is undoubtedly important, many viruses that are pathogenic for humans, including HIV-1, herpes simplex virus and measles, can also move between cells without diffusing through the extracellular environment. Cell-to-cell spread not only facilitates rapid viral dissemination, but may also promote immune evasion and influence disease. This Review discusses the various mechanisms by which viruses move directly between cells and the implications of this for viral dissemination and pathogenesis.

Verstrepen BE, Bins AD, Rollier CS, Mooij P, Koopman G, Sheppard NC, Sattentau Q, Wagner R, Wolf H, Schumacher TNM et al. 2008. Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine, 26 (26), pp. 3346-3351. | Show Abstract | Read more

The new intradermal DNA delivery technique, termed DNA tattooing might overcome the discrepancy between the encouraging immunogenicity results obtained with DNA vaccines in murine studies and the poor results obtained in non-human primates and humans, the so called "simian barrier". Here, we demonstrate a 10- to 100-fold increase in the magnitude of vaccine specific T-cell responses in peripheral blood from DNA tattooed rhesus macaques, as compared to T-cell responses in animals immunized via intramuscular (IM) route. A marked increase in the magnitude of the antigen specific T-cell responses as well as an increase in the number of animals responding to the immunogens was observed. These findings in non-human primates suggest that similar results may be observed in humans. Clinical trials are planned to validate tattooing as an optimal method of DNA vaccine delivery in humans.

Bart P-A, Goodall R, Barber T, Harari A, Guimaraes-Walker A, Khonkarly M, Sheppard NC, Bangala Y, Frachette M-J, Wagner R et al. 2008. EV01: a phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine, 26 (25), pp. 3153-3161. | Show Abstract | Read more

NYVAC-C (vP2010), a recombinant vector expressing HIV subtype C gag, pol, env and nef antigens, was tested in a phase I study in healthy, HIV negative volunteers in London and Lausanne. Twenty-four participants were randomised to receive NYVAC-C (20) or matching placebo (4) at weeks 0 and 4, and assessed for safety and immunogenicity over 48 weeks. There were no serious adverse events, and no clinical or laboratory abnormalities or other events that led to withdrawal, interruption or dose reduction of the NYVAC-C/placebo. Half of the 10 assessed responded in the ELISpot assay under stringent criteria, which informed the sample size for a DNA-NYVAC-C comparison to NYVAC-C alone.

Sattentau Q. 2008. Correlates of antibody-mediated protection against HIV infection. Curr Opin HIV AIDS, 3 (3), pp. 368-374. | Show Abstract | Read more

PURPOSE OF REVIEW: The only unequivocal correlate of protection against primate immunodeficiency virus infection is the presence of neutralizing antibody at sufficient titre. This correlate has been determined experimentally using animal models, and the data are reproducible and robust. Recent advances have added further depth to this knowledge by moving us closer to understanding how antibodies neutralize HIV-1, and what effects they may have in vivo with regard to protection from infection and disease. RECENT FINDINGS: This review will cover recent advances in our understanding of the structural basis of HIV-1 neutralization by antibody and how this understanding may relate to vaccine design, and incorporate this into the broader context of how antibodies may influence viral transmission, replication and disease. SUMMARY: The sum of these findings provides a strong rationale for designing an HIV-1 vaccine on the principle of induction of neutralizing antibodies, although other effector functions of antibodies such as complement and antibody-mediated cellular immunity should also be borne in mind, as should CD4 and CD8 T cell responses.

Groot F, Welsch S, Sattentau QJ. 2008. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood, 111 (9), pp. 4660-4663. | Show Abstract | Read more

Macrophages are reservoirs of HIV-1 infection, proposed to transmit virus to CD4(+) T cells, the primary target of the virus. Here we report that human monocyte-derived macrophages (MDMs) rapidly spread HIV-1 to autologous CD4(+) T cells resulting in productive infection. Transmission takes place across transient adhesive contacts between T cells and MDMs, which have the features of a virological synapse including copolarization of CD4 on the T cell with HIV-1 Gag and Env on the macrophage. We propose that an infected MDM can infect at least one T cell every 6 hours. Since HIV-1-infected macrophages can survive for many weeks, these results highlight the central role played by macrophages in HIV-1 infection and pathogenesis.

Sattentau Q. 2008. HIV's gut feeling. Nat Immunol, 9 (3), pp. 225-227. | Read more

Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C et al. 2008. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol, 10 (2), pp. 211-219. | Show Abstract | Read more

Transmission of HIV-1 via intercellular connections has been estimated as 100-1000 times more efficient than a cell-free process, perhaps in part explaining persistent viral spread in the presence of neutralizing antibodies. Such effective intercellular transfer of HIV-1 could occur through virological synapses or target-cell filopodia connected to infected cells. Here we report that membrane nanotubes, formed when T cells make contact and subsequently part, provide a new route for HIV-1 transmission. Membrane nanotubes are known to connect various cell types, including neuronal and immune cells, and allow calcium-mediated signals to spread between connected myeloid cells. However, T-cell nanotubes are distinct from open-ended membranous tethers between other cell types, as a dynamic junction persists within T-cell nanotubes or at their contact with cell bodies. We also report that an extracellular matrix scaffold allows T-cell nanotubes to adopt variably shaped contours. HIV-1 transfers to uninfected T cells through nanotubes in a receptor-dependent manner. These data lead us to propose that HIV-1 can spread using nanotubular connections formed by short-term intercellular unions in which T cells specialize.

Cited:

37

Scopus

Verstrepen BE, Bins AD, Rollier CS, Mooij P, Koopman G, Sheppard NC, Sattentau Q, Wagner R, Wolf H, Schumacher TNM et al. 2008. Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates Vaccine, 26 (26), pp. 3346-3351. | Show Abstract | Read more

The new intradermal DNA delivery technique, termed DNA tattooing might overcome the discrepancy between the encouraging immunogenicity results obtained with DNA vaccines in murine studies and the poor results obtained in non-human primates and humans, the so called "simian barrier". Here, we demonstrate a 10- to 100-fold increase in the magnitude of vaccine specific T-cell responses in peripheral blood from DNA tattooed rhesus macaques, as compared to T-cell responses in animals immunized via intramuscular (IM) route. A marked increase in the magnitude of the antigen specific T-cell responses as well as an increase in the number of animals responding to the immunogens was observed. These findings in non-human primates suggest that similar results may be observed in humans. Clinical trials are planned to validate tattooing as an optimal method of DNA vaccine delivery in humans. © 2008 Elsevier Ltd. All rights reserved.

Jolly C, Mitar I, Sattentau QJ. 2007. Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol, 81 (24), pp. 13916-13921. | Show Abstract | Read more

Human immunodeficiency virus type 1 (HIV-1) can spread between CD4+ T cells by using a virological synapse (VS). The VS assembly is a cytoskeleton-driven process dependent on HIV-1 envelope glycoprotein (Env)-receptor engagement and is hypothesized to require adhesion molecule interactions. Here we demonstrate that leukocyte function-associated antigen 1 (LFA-1), intercellular adhesion molecule 1 (ICAM-1), and ICAM-3 are enriched at the VS and that inhibition of these interactions influences conjugate formation and reduces VS assembly. Moreover, CD4+ T cells deficient in LFA-1 or with modified LFA-1 function were less able to support VS assembly and cell-cell transfer of HIV-1. Thus, cognate adhesion molecule interactions at the VS are important for HIV-1 spread between T cells.

Montefiori D, Sattentau Q, Flores J, Esparza J, Mascola J, Working Group convened by the Global HIV Vaccine Enterprise. 2007. Antibody-based HIV-1 vaccines: recent developments and future directions. PLoS Med, 4 (12), pp. e348. | Read more

Jolly C, Sattentau QJ. 2007. Regulated secretion from CD4+ T cells. Trends Immunol, 28 (11), pp. 474-481. | Show Abstract | Read more

The regulated secretion of cellular proteins is central to the correct function of many cell types, including immune cells. Lymphocyte control of the storage, transport and exocytosis of immunomodulatory molecules is a highly specialised task triggered by T cell receptor engagement. The regulated secretory pathway in CD8+ T and NK cells has been the focus of much research, and recent advances have provided insight into the molecular mechanisms governing secretory organelle biogenesis, trafficking and killing. By contrast, regulated secretory pathways in CD4+ T cells have not been studied extensively. Aside from their physiological function in normal T cells, components of CD4+ T cell secretory pathways might be implicated in the assembly of HIV-1. Here, we review findings that shed light on CD4+ T cell secretion in health and disease.

Gantlett KE, Weber JN, Sattentau QJ. 2007. Synergistic inhibition of HIV-1 infection by combinations of soluble polyanions with other potential microbicides. Antiviral Res, 75 (3), pp. 188-197. | Show Abstract | Read more

Several polyanionic compounds with potential for use as topically applied microbicides to prevent HIV-1 sexual transmission, such as PRO 2000, are currently in phase III clinical efficacy trials. Microbicidal formulations may well comprise combinations of inhibitors to increase potency, reduce dose and minimize problems of HIV-1 resistance. We have therefore evaluated in vitro, the anti-HIV-1 activity of two leading polyanionic microbicides combined with other antiretroviral agents with microbicidal potential. Dextran sulfate (DS) and PRO 2000 were combined with the neutralizing antibody IgG1b12, the peptide-based fusion inhibitor T20, the CCR5 antagonist TAK779 and the cyanobacterial protein cyanovirin-N. Anti-HIV-1 activity was assessed in a single cycle replication assay using pseudoviruses carrying a luciferase reporter gene and the envelope glycoproteins from HIV-1 isolates JR-FL (R5) and HxB2 (X4), against both immortalized and primary CD4+ cell targets. The data were analyzed for synergy using Calcusyn software. Results indicate that PRO 2000 and DS can act synergistically with most inhibitors tested, although the degree of synergy depends on inhibitor concentration and combination. These data provide a rational basis for testing of microbicide combinations in vivo.

Jolly C, Sattentau QJ. 2007. Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J Virol, 81 (15), pp. 7873-7884. | Show Abstract | Read more

Human immunodeficiency virus type-1 (HIV-1) egress from infected CD4+ T cells is thought to be via assembly and budding at the plasma membrane and may involve components of the T-cell secretory apparatus, including tetraspanins. However, many studies on HIV-1 assembly have examined the trafficking of viral proteins in isolation, and most have used immortalized epithelial, fibroblastic, or hematopoietic cell lines that may not necessarily reflect natural infection of susceptible T cells. Here we have used immunofluorescence and cryoimmunoelectron microscopy (CEM) to examine protein transport during HIV-1 assembly in productively infected Jurkat CD4+ T cells and primary CD4+ T cells. The HIV-1 envelope glycoprotein (Env) and the core protein (Gag) colocalize strongly with CD63 and CD81 and less strongly with CD9, whereas no colocalization was seen between Env or Gag and the late endosome/lysosomal marker Lamp2. CEM revealed incorporation of CD63 and CD81 but not Lamp2 into virions budding at the plasma membrane, and this was supported by immunoprecipitation studies, confirming that HIV-1 egress in T cells is trafficked via tetraspanin-enriched membrane domains (TEMs) that are distinct from lysosomal compartments. CD63, CD81, and, to a lesser extent, CD9 were recruited to the virological synapse (VS), and antibodies against these tetraspanins reduced VS formation. We propose that HIV-1 promotes virus assembly and cell-cell transfer in T cells by targeting plasma membrane TEMs.

Jolly C, Mitar I, Sattentau QJ. 2007. Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J Virol, 81 (11), pp. 5547-5560. | Show Abstract | Read more

Human immunodeficiency virus type 1 (HIV-1) infection of CD4(+) T cells leads to the production of new virions that assemble at the plasma membrane. Gag and Env accumulate in the context of lipid rafts at the inner and outer leaflets of the plasma membrane, respectively, forming polarized domains from which HIV-1 buds. HIV-1 budding can result in either release of cell-free virions or direct cell-cell spread via a virological synapse (VS). The recruitment of Gag and Env to these plasma membrane caps in T cells is poorly understood but may require elements of the T-cell secretory apparatus coordinated by the cytoskeleton. Using fixed-cell immunofluorescence labeling and confocal microscopy, we observed a high percentage of HIV-1-infected T cells with polarized Env and Gag in capped, lipid raft-like assembly domains. Treatment of infected T cells with inhibitors of actin or tubulin remodeling disrupted Gag and Env compartmentalization within the polarized raft-like domains. Depolymerization of the actin cytoskeleton reduced Gag release and viral infectivity, and actin and tubulin inhibitors reduced Env incorporation into virions. Live- and fixed-cell confocal imaging and assay of de novo DNA synthesis by real-time PCR allowed quantification of HIV-1 cell-cell transfer. Inhibition of actin and tubulin remodeling in infected cells interfered with cell-cell spread across a VS and reduced new viral DNA synthesis. Based on these data, we propose that HIV-1 requires both actin and tubulin components of the T-cell cytoskeleton to direct its assembly and budding and to elaborate a functional VS.

Sheppard NC, Bates AC, Sattentau QJ. 2007. A functional human IgM response to HIV-1 Env after immunization with NYVAC HIV C. AIDS, 21 (4), pp. 524-527. | Show Abstract | Read more

Env-specific IgG and IgM were detected in 25 and 60%, respectively, of volunteers immunized with NYVAC expressing clade C gp120. The serum sample with the highest IgM titre but undetectable IgG neutralized the homologous isolate with a reciprocal IC90 titre of 7.8 in the absence of complement, and 24.4 in the presence of complement (P = 0.0003). These results suggest that vaccine-induced, Env-specific IgM may have antiviral activity and should be subjected to further investigation.

Sheppard NC, Davies SL, Jeffs SA, Vieira SM, Sattentau QJ. 2007. Production and characterization of high-affinity human monoclonal antibodies to human immunodeficiency virus type 1 envelope glycoproteins in a mouse model expressing human immunoglobulins. Clin Vaccine Immunol, 14 (2), pp. 157-167. | Show Abstract | Read more

Human (Hu) monoclonal antibodies (MAbs) against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) are useful tools in the structural and functional analysis of Env, are under development both as potential prophylaxis and as therapy for established HIV-1 infection, and have crucial roles in guiding the design of preventative vaccines. Despite representing more than 50% of infections globally, no MAbs have been generated in any species against C clade HIV-1 Env. To generate HuMAbs to a novel Chinese C clade Env vaccine candidate (primary isolate strain HIV-1(97CN54)), we used BAB5 mice that express a human immunoglobulin (Ig) M antibody repertoire in place of endogenous murine immunoglobulins. When immunized with HIV-1(97CN54) Env, these mice developed antigen-specific IgM antibodies. Hybridoma fusions using splenocytes from these mice enabled the isolation of two Env-specific IgM HuMAbs: N3C5 and N03B11. N3C5 bound to HIV-1 Env from clades A and C, whereas N03B11 bound two geographically distant clade C isolates but not Env from other clades. These HuMAbs bind conformational epitopes within the immunodominant region of the gp41 ectodomain. N3C5 weakly neutralized the autologous isolate in the absence of complement and weakly enhanced infection in the presence of complement. N03B11 has no effect on infectivity in either the presence or the absence of complement. These novel HuMAbs are useful reagents for the study of HIV-1 Env relevant to the global pandemic, and mice producing human immunoglobulin present a tool for the production of such antibodies.

Ahuja SK, Aiuti F, Berkhout B, Biberfeld P, Burton DR, Colizzi V, Deeks SG, Desrosiers RC, Dierich MP, Doms RW et al. 2006. A plea for justice for jailed medical workers. Science, 314 (5801), pp. 924-925. | Read more

Moghaddam A, Olszewska W, Wang B, Tregoning JS, Helson R, Sattentau QJ, Openshaw PJM. 2006. A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines. Nat Med, 12 (8), pp. 905-907. | Show Abstract | Read more

Heat, oxidation and exposure to aldehydes create reactive carbonyl groups on proteins, targeting antigens to scavenger receptors. Formaldehyde is widely used in making vaccines, but has been associated with atypical enhanced disease during subsequent infection with paramyxoviruses. We show that carbonyl groups on formaldehyde-treated vaccine antigens boost T helper type 2 (T(H)2) responses and enhance respiratory syncytial virus (RSV) disease in mice, an effect partially reversible by chemical reduction of carbonyl groups.

Zanetti G, Briggs JAG, Grünewald K, Sattentau QJ, Fuller SD. 2006. Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog, 2 (8), pp. e83. | Show Abstract | Read more

The envelope glycoprotein (Env) complexes of the human and simian immunodeficiency viruses (HIV and SIV, respectively) mediate viral entry and are a target for neutralizing antibodies. The receptor binding surfaces of Env are in large part sterically occluded or conformationally masked prior to receptor binding. Knowledge of the unliganded, trimeric Env structure is key for an understanding of viral entry and immune escape, and for the design of vaccines to elicit neutralizing antibodies. We have used cryo-electron tomography and averaging to obtain the structure of the SIV Env complex prior to fusion. Our result reveals novel details of Env organisation, including tight interaction between monomers in the gp41 trimer, associated with a three-lobed, membrane-distal gp120 trimer. A cavity exists at the gp41-gp120 trimer interface. Our model for the spike structure agrees with previously predicted interactions between gp41 monomers, and furthers our understanding of gp120 interactions within an intact spike.

Lehner T, Hoelscher M, Clerici M, Gotch F, Pedneault L, Tartaglia J, Gray C, Mestecky J, Sattentau Q, van de Wijgert J et al. 2005. European Union and EDCTP strategy in the global context: recommendations for preventive HIV/AIDS vaccines research. Vaccine, 23 (48-49), pp. 5551-5556. | Show Abstract | Read more

The European Commission (EC) has strong commitments and recognises the need to continue to ensure that HIV/AIDS research efforts receive global attention. The EC is facing this challenge in a global context and has made substantial investments together with European Developing Countries Clinical Trial Partnership (EDCTP) to formulate a program for the accomplishment of a scientific strategic plan promoting the European/African HIV vaccine development approach. The EC and EDCTP has convened a number of meetings by experts in basic and clinical virology, immunology, epidemiology, as well as industrial and regulatory representatives. The remit of the committee of experts was to define (1) objective criteria for selection of HIV candidates; (2) to determine criteria for selection of sites for clinical trials in Europe and Africa. The resulting consensus paper will guide the EC and EDCTP in developing HIV vaccine strategy and recommendations.

Zhou T, Hamer DH, Hendrickson WA, Sattentau QJ, Kwong PD. 2005. Interfacial metal and antibody recognition. Proc Natl Acad Sci U S A, 102 (41), pp. 14575-14580. | Show Abstract | Read more

The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca(2+), Ba(2+), or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with approximately 1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition.

Jolly C, Sattentau QJ. 2005. Human immunodeficiency virus type 1 virological synapse formation in T cells requires lipid raft integrity. J Virol, 79 (18), pp. 12088-12094. | Show Abstract | Read more

Human immunodeficiency virus type 1 (HIV-1) can spread directly between T cells by forming a supramolecular structure termed a virological synapse (VS). HIV-1 envelope glycoproteins (Env) are required for VS assembly, but their mode of recruitment is unclear. We investigated the distribution of GM1-rich lipid rafts in HIV-1-infected (effector) T cells and observed Env colocalization with polarized raft markers GM1 and CD59 but not with the transferrin receptor that is excluded from lipid rafts. In conjugates of effector T cells and target CD4+ T cells, GM1, Env, and Gag relocated to the cell-cell interface. The depletion of cholesterol in the infected cell dispersed Env and GM1 within the plasma membrane, eliminated Gag clustering at the site of cell-cell contact, and abolished assembly of the VS. Raft integrity is therefore critical for Env and Gag co-clustering and VS assembly in T-cell conjugates.

Vivès RR, Imberty A, Sattentau QJ, Lortat-Jacob H. 2005. Heparan sulfate targets the HIV-1 envelope glycoprotein gp120 coreceptor binding site. J Biol Chem, 280 (22), pp. 21353-21357. | Show Abstract | Read more

Human immunodeficiency virus (HIV) attachment to host cells is a multi-step process that involves interaction of the viral envelope gp120 with the primary receptor CD4 and coreceptors. HIV gp120 also binds to other cell surface components, including heparan sulfate (HS), a sulfated polysaccharide whose wide interactive properties are exploited by many pathogens for attachment and concentration at the cell surface. To analyze the structural features of gp120 binding to HS, we used soluble CD4 to constrain gp120 in a specific conformation. We first found that CD4 induced conformational change of gp120, dramatically increasing binding to HS. We then showed that HS binding interface on gp120 comprised, in addition to the well characterized V3 loop, a CD4-induced epitope. This epitope is efficiently targeted by nanomolar concentrations of size-defined heparin/HS-derived oligosaccharides. Because this domain of the protein also constitutes the binding site for the viral coreceptors, these results support an implication of HS at late stages of the virus-cell attachment process and suggest potential therapeutic applications.

Mitchison NA, Sattentau Q. 2005. Fundamental immunology and what it can teach us about HIV vaccine development. Curr Drug Targets Infect Disord, 5 (2), pp. 87-93. | Show Abstract | Read more

This survey covers the immunological background to development of an HIV vaccine, starting from an overview of present understanding of the mechanisms of immunoregulation. It follows the uptake, processing and presentation of an antigen, from its initial uptake by a dendritic cell and its deposit on the dendrites of follicular dendritic cells. It pursues the antigen through uptake by B cells, presentation of epitopes to helper T cells and the eventual production of antibody. In the second arm of the immune response it follows synapse formation between dendritic cell and CD4/CD8 cells leading to production of CTL. It identifies epitope linkage as a key element in directing these pathways. It identifies the principal functions of the various types of cell cooperation. Continuing, it focuses on topics relevant to vaccine development: Th1/Th2 balance: new adjuvants based on ligands of TLRs and other activators of innate immunity, as well as new forms of intervention in antigen processing. We urge that the new vaccine fusion constructs be evaluated against a fusion gold standard rather than against antigen alone. These considerations open new strategies of HIV vaccine development. . Finally we urge that vaccine trials should include storage of individual DNA samples, in order to gain better understanding of the genetic parameters of vaccine efficacy.

Sheppard N, Sattentau Q. 2005. The prospects for vaccines against HIV-1: more than a field of long-term nonprogression? Expert Rev Mol Med, 7 (2), pp. 1-21. | Show Abstract | Read more

More than 20 years have passed since the human immunodeficiency virus (HIV)-1 was identified as the cause of AIDS (acquired immune deficiency syndrome). With rapid early progress, the development of a vaccine was predicted within 2-10 years. However, over two decades later, we have seen only a single vaccine candidate complete Phase III clinical efficacy trials. These trials showed the vaccine was not able to protect the trial volunteers from HIV infection or subsequently modify the early clinical progression. It is now accepted that the initial optimism in the field was misguided, as the complexity of the problem stretched beyond the known horizons of vaccinology, immunology and retrovirology. In the intervening 20 years, unprecedented research efforts have pushed the cutting edge of these fields forward to such a degree that we are better able to put the problem of developing a vaccine for HIV-1 into context. Now it is time to examine the prospects for HIV-1 vaccines and ascertain whether real progress is being made.

Hartley O, Klasse PJ, Sattentau QJ, Moore JP. 2005. V3: HIV's switch-hitter. AIDS Res Hum Retroviruses, 21 (2), pp. 171-189. | Show Abstract | Read more

The third variable region, V3, of the gp120 surface envelope glycoprotein is an approximately 35-residue-long, frequently glycosylated, highly variable, disulfide-bonded structure that has a major influence on HIV-1 tropism. Thus the sequence of V3, directly or indirectly, can determine which coreceptor (CCR5 or CXCR4) is used to trigger the fusion potential of the Env complex, and hence which cells the virus can infect. V3 also influences HIV-1's sensitivity to, and ability to escape from, entry inhibitors that are being developed as antiviral drugs. For some strains, V3 is a prominent target for HIV-1 neutralizing antibodies (NAbs); indeed, for many years it was considered to be the "principal neutralization determinant" (PND). Some efforts to use V3 as a vaccine target continue to this day, despite disappointing progress over more than a decade. Recent findings on the structure, function, antigenicity, and immunogenicity of V3 cast new doubts on the value of this vaccine approach. Here, we review recent advances in the understanding of V3 as a determinant of viral tropism, and discuss how this new knowledge may inform the development of HIV-1 drugs and vaccines.

Morcock DR, Thomas JA, Gagliardi TD, Gorelick RJ, Roser JD, Chertova EN, Bess JW, Ott DE, Sattentau QJ, Frank I et al. 2005. Elimination of retroviral infectivity by N-ethylmaleimide with preservation of functional envelope glycoproteins. J Virol, 79 (3), pp. 1533-1542. | Show Abstract | Read more

The zinc finger motifs in retroviral nucleocapsid (NC) proteins are essential for viral replication. Disruption of these Cys-X2-Cys-X4-His-X4-Cys zinc-binding structures eliminates infectivity. To determine if N-ethylmaleimide (NEM) can inactivate human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) preparations by alkylating cysteines of NC zinc fingers, we treated infectious virus with NEM and evaluated inactivation of infectivity in cell-based assays. Inactivation was rapid and proportional to the NEM concentration. NEM treatment of HIV-1 or SIV resulted in extensive covalent modification of NC and other internal virion proteins. In contrast, viral envelope glycoproteins, in which the cysteines are disulfide bonded, remained intact and functional, as assayed by high-performance liquid chromatography, fusion-from-without analyses, and dendritic cell capture. Quantitative PCR assays for reverse transcription intermediates showed that NEM and 2,2'-dipyridyl disulfide (aldrithiol-2), a reagent which inactivates retroviruses through oxidation of cysteines in internal virion proteins such as NC, blocked HIV-1 reverse transcription prior to the formation of minus-strand strong-stop products. However, the reverse transcriptase from NEM-treated virions remained active in exogenous template assays, consistent with a role for NC in reverse transcription. Since disruption of NC zinc finger structures by NEM blocks early postentry steps in the retroviral infection cycle, virus preparations with modified NC proteins may be useful as vaccine immunogens and probes of the role of NC in viral replication.

Jolly C, Mitar I, Sattentau Q. 2005. T cell complicity in HIV spread RETROVIROLOGY, 2 | Read more

Cited:

133

European Pubmed Central

Piguet V, Sattentau Q. 2004. Dangerous liaisons at the virological synapse. J Clin Invest, 114 (5), pp. 605-610. | Show Abstract | Read more

Cell-to-cell viral transmission facilitates the propagation of HIV-1 and human T cell leukemia virus type 1. Mechanisms of cell-to-cell transmission by retroviruses were not well understood until the recent description of virological synapses (VSs). VSs function as specialized sites of immune cell-to-cell contact that direct virus infection. Deciphering the molecular mechanisms of VS formation provides a fascinating insight into how pathogens subvert immune cell communication programs and achieve viral spread.

Cited:

141

WOS

Jolly C, Sattentau QJ. 2004. Retroviral spread by induction of virological synapses TRAFFIC, 5 (9), pp. 643-650. | Read more

Jolly C, Sattentau QJ. 2004. Retroviral spread by induction of virological synapses. Traffic, 5 (9), pp. 643-650. | Show Abstract | Read more

Cells of the immune system communicate via the formation of receptor-containing adhesive junctions termed immunological synapses. Recently, retroviruses have been shown to subvert this process in order to pass directly from infected to uninfected immune cells. Such cell-cell viral dissemination appears to function by triggering existing cellular pathways involved in antigen presentation and T-cell communication. This mode of viral spread has important consequences for both the virus and the host cells in terms of viral pathogenesis and viral resistance to immune and therapeutic intervention. This review summarises the current knowledge concerning virological synapses induced by retroviruses.

Cited:

177

Scopus

Piguet V, Sattentau Q. 2004. Dangerous liaisons at the virological synapse JOURNAL OF CLINICAL INVESTIGATION, 114 (5), pp. 605-610. | Show Abstract | Read more

Cell-to-cell viral transmission facilitates the propagation of HIV-1 and human T cell leukemia virus type 1. Mechanisms of cell-to-cell transmission by retroviruses were not well understood until the recent description of virological synapses (VSs). VSs function as specialized sites of immune cell-to-cell contact that direct virus infection. Deciphering the molecular mechanisms of VS formation provides a fascinating insight into how pathogens subvert immune cell communication programs and achieve viral spread.

Jeffs SA, Goriup S, Kebble B, Crane D, Bolgiano B, Sattentau Q, Jones S, Holmes H. 2004. Expression and characterisation of recombinant oligomeric envelope glycoproteins derived from primary isolates of HIV-1. Vaccine, 22 (8), pp. 1032-1046. | Show Abstract | Read more

The production, purification and characterisation of recombinant gp140 oligomeric envelope glycoproteins derived from six primary isolates of HIV-1 (covering clades A, B, C, D, F and O) are described. Using a Chinese hamster ovary cell expression system, expression levels of between 0.1 and 1 mg/l cell-conditioned culture media were obtained, and purified to >95% by affinity chromatography. A, B, D, F and O clade gp 140s were found to be multimeric, bind to a panel of defined env-specific monoclonal antibodies and interact with CD4 and CXCR4, demonstrating correct folding. Their immunogenicity was confirmed by the generation of high-titre anti-gp140 antibodies in rabbits. The C clade gp140 was incorrectly folded and poorly antigenic. Despite the presence of an unmodified gp120/41 cleavage site, only the B clade gp140 showed significant processing to gp120 and gp41. Each gp140 has a specific pattern of oligomerisation, and varies in its resistance to reducing agents and salt concentration. The binding of gp140 to soluble and cell-surface CD4 and CXCR4 is related to the degree of oligomerisation. The C1 and C5 regions, CD4 binding domain and the epitope defined by the 2G12 monoclonal antibody were well exposed, but the C-terminal region of the extracellular domain of gp41 appears to be occluded by oligomerisation. These reagents have potential as immunogens for use in vaccine development.

Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. 2004. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med, 199 (2), pp. 283-293. | Show Abstract | Read more

Direct cell-cell transfer is an efficient mechanism of viral dissemination within an infected host, and human immunodeficiency virus 1 (HIV-1) can exploit this mode of spread. Receptor recognition by HIV-1 occurs via interactions between the viral surface envelope glycoprotein (Env), gp120, and CD4 and a chemokine receptor, CCR5 or CXCR4. Here, we demonstrate that the binding of CXCR4-using HIV-1-infected effector T cells to primary CD4(+)/CXCR4(+) target T cells results in rapid recruitment to the interface of CD4, CXCR4, talin, and lymphocyte function-associated antigen 1 on the target cell, and of Env and Gag on the effector cell. Recruitment of these membrane molecules into polarized clusters was dependent on Env engagement of CD4 and CXCR4 and required remodelling of the actin cytoskeleton. Transfer of Gag from effector to target cell was observed by 1 h after conjugate formation, was independent of cell-cell fusion, and was probably mediated by directed virion fusion with the target cell. We propose that receptor engagement by Env directs the rapid, actin-dependent recruitment of HIV receptors and adhesion molecules to the interface, resulting in a stable adhesive junction across which HIV infects the target cell.

Khati M, Schüman M, Ibrahim J, Sattentau Q, Gordon S, James W. 2003. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2'F-RNA aptamers. J Virol, 77 (23), pp. 12692-12698. | Show Abstract | Read more

Human immunodeficiency virus type 1 (HIV-1) has evolved a number of strategies to resist current antiretroviral drugs and the selection pressures of humoral and cellular adaptive immunity. For example, R5 strains, which use the CCR5 coreceptor for entry and are the dominant viral phenotype for HIV-1 transmission and AIDS pathogenesis, are relatively resistant to neutralization by antibodies, as are other clinical isolates. In order to overcome these adaptations, we raised nucleic acid aptamers to the SU glycoprotein (gp120) of the R5 strain, HIV-1(Ba-L). These not only bound gp120 with high affinity but also neutralized HIV-1 infectivity in human peripheral blood mononuclear cells (PBMCs) by more than 1,000-fold. Furthermore, these aptamers were able to neutralize the infectivity of R5 clinical isolates of HIV-1 derived from group M (subtypes A, C, D, E, and F) and group O. One aptamer defined a site on gp120 that overlaps partially with the conserved, chemokine receptor-binding, CD4-induced epitope recognized by monoclonal antibody 17b. In contrast to the antibody, the site is accessible to aptamer in the absence of CD4 binding. Neutralizing aptamers such as this could be exploited to provide leads in developing alternative, efficacious anti-HIV-1 drugs and lead to a deeper understanding of the molecular interactions between the virus and its host cell.

Piñon JD, Klasse PJ, Jassal SR, Welson S, Weber J, Brighty DW, Sattentau QJ. 2003. Human T-cell leukemia virus type 1 envelope glycoprotein gp46 interacts with cell surface heparan sulfate proteoglycans. J Virol, 77 (18), pp. 9922-9930. | Show Abstract | Read more

The major receptors required for attachment and entry of the human T-cell leukemia virus type 1 (HTLV-1) remain to be identified. Here we demonstrate that a functional, soluble form of the HTLV-1 surface envelope glycoprotein, gp46, fused to an immunoglobulin Fc region (gp46-Fc) binds to heparan sulfate proteoglycans (HSPGs) on mammalian cells. Substantial binding of gp46-Fc to HeLa and Chinese hamster ovary (CHO) K1 cells that express HSPGs was detected, whereas binding to the sister CHO lines 2244, which expresses no HSPGs, and 2241, which expresses no glycosaminoglycans (GAGs), was much reduced. Enzymatic removal of HSPGs from HeLa and CHO K1 cells also reduced gp46-Fc binding. Dextran sulfate inhibited gp46-Fc binding to HSPG-expressing cells in a dose-dependent manner, whereas chondroitin sulfate was less effective. By contrast, dextran sulfate inhibited gp46-Fc binding to GAG-negative cells such as CHO 2244, CHO 2241, and Jurkat T cells weakly or not at all. Dextran sulfate inhibited HTLV-1 envelope glycoprotein (Env)-pseudotyped virus infection of permissive, HSPG-expressing target cells and blocked syncytium formation between HTLV-1 Env-expressing cells and HSPG-expressing permissive target cells. Finally, HSPG-expressing cells were more permissive for HTLV-1 Env-pseudotyped virus infection than HSPG-negative cells. Thus, similar to other pathogenic viruses, HTLV-1 may have evolved to use HSPGs as cellular attachment receptors to facilitate its propagation.

Klasse PJ, Sattentau QJ. 2002. Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol, 83 (Pt 9), pp. 2091-2108. | Show Abstract | Read more

Neutralization of virus infectivity by antibodies is an important component of immunity to several virus infections. Here, the immunochemical basis for the action of neutralizing antibodies, and what role their induction of conformational changes in the antigen might play, is reviewed. Theories of the mechanisms by which antibodies neutralize virus infectivity in vitro are also presented. The theoretical and empirical foundation of the hypothesis that viruses are neutralized by a single antibody per virion is critically reviewed. The relationship between antibody occupancy on virions and the mechanism of neutralization is explored. Examples of neutralization mediated through antibody interference with virus attachment and entry are discussed and test implications of refined theories of neutralization by antibody coating of virions are formulated.

Klasse PJ, Sattentau QJ. 2001. Mechanisms of virus neutralization by antibody. Curr Top Microbiol Immunol, 260 pp. 87-108. | Read more

Moulard M, Lortat-Jacob H, Mondor I, Roca G, Wyatt R, Sodroski J, Zhao L, Olson W, Kwong PD, Sattentau QJ. 2000. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J Virol, 74 (4), pp. 1948-1960. | Show Abstract | Read more

It is well established that the gp120 V3 loop of T-cell-line-adapted human immunodeficiency virus type 1 (HIV-1) binds both cell-associated and soluble polyanions. Virus infectivity is increased by interactions between HIV-1 and heparan sulfate proteoglycans on some cell types, and soluble polyanions such as heparin and dextran sulfate neutralize HIV-1 in vitro. However, the analysis of gp120-polyanion interactions has been limited to T-cell-line-adapted, CXCR4-using virus and virus-derived gp120, and the polyanion binding ability of gp120 regions other than the V3 loop has not been addressed. Here we demonstrate by monoclonal-antibody inhibition, labeled heparin binding, and surface plasmon resonance studies that a second site, most probably corresponding to the newly defined, highly conserved coreceptor binding region on gp120, forms part of the polyanion binding surface. Consistent with the binding of polyanions to the coreceptor binding surface, dextran sulfate interfered with the gp120-CXCR4 association while having no detectable effect on the gp120-CD4 interaction. The interaction between polyanions and X4 or R5X4 gp120 was readily detectable, whereas weak or undetectable binding was observed with R5 gp120. Analysis of mutated forms of X4 gp120 demonstrated that the V3 loop is the major determinant for polyanion binding whereas other regions, including the V1/V2 loop structure and the NH(2) and COOH termini, exert a more subtle influence. A molecular model of the electrostatic potential of the conserved coreceptor binding region confirmed that it is basic but that the overall charge on this surface is dominated by the V3 loop. These results demonstrate a selective interaction of gp120 with polyanions and suggest that the conserved coreceptor binding surface may present a novel and conserved target for therapeutic intervention.

Kwong PD, Wyatt R, Sattentau QJ, Sodroski J, Hendrickson WA. 2000. Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J Virol, 74 (4), pp. 1961-1972. | Show Abstract | Read more

The human immunodeficiency virus envelope glycoproteins, gp120 and gp41, function in cell entry by binding to CD4 and a chemokine receptor on the cell surface and orchestrating the direct fusion of the viral and target cell membranes. On the virion surface, three gp120 molecules associate noncovalently with the ectodomain of the gp41 trimer to form the envelope oligomer. Although an atomic-level structure of a monomeric gp120 core has been determined, the structure of the oligomer is unknown. Here, the orientation of gp120 in the oligomer is modeled by using quantifiable criteria of carbohydrate exposure, occlusion of conserved residues, and steric considerations with regard to the binding of the neutralizing antibody 17b. Applying similar modeling techniques to influenza virus hemagglutinin suggests a rotational accuracy for the oriented gp120 of better than 10 degrees. The model shows that CD4 binds obliquely, such that multiple CD4 molecules bound to the same oligomer have their membrane-spanning portions separated by at least 190 A. The chemokine receptor, in contrast, binds to a sterically restricted surface close to the trimer axis. Electrostatic analyses reveal a basic region which faces away from the virus, toward the target cell membrane, and is conserved on core gp120. The electrostatic potentials of this region are strongly influenced by the overall charge, but not the precise structure, of the third variable (V3) loop. This dependence on charge and not structure may make electrostatic interactions between this basic region and the cell difficult to target therapeutically and may also provide a means of viral escape from immune system surveillance.

Chenine AL, Sattentau Q, Moulard M. 2000. Selective HIV-1-induced downmodulation of CD4 and coreceptors. Arch Virol, 145 (3), pp. 455-471. | Show Abstract | Read more

CD4 and members of the chemokine receptor family are required for infection of host cells, in vitro and in vivo, by the human immunodeficiency virus type-1. Although it is established that HIV-1 gp 120 interacts with CD4 and the coreceptors CCR5 or CXCR4 at the plasma membrane during HIV entry, longer-term interactions taking place between these molecules and HIV Env are less well understood. We have measured the cell surface expression of CD4, CCR5 and CXCR4 on a CD4+/CXCR4+CCR5+ T cell line following infection by cell line-adapted X4 and primary X4, X4R5 and R5 viruses. We report a selective downmodulation of CD4 by X4 and R5X4 viruses, but not by R5 viruses. None of the viruses tested significantly reduced CXCR4 expression at any time after infection. CCR5 protein and mRNA expression was eliminated by chronic infection with R5 viruses. These results indicate that chronic HIV-1 infection has distinct effects on CD4 and coreceptor membrane expression that depends on viral origin and coreceptor usage.

Denisova GF, Zerwanitzer M, Denisov DA, Spectorman E, Mondor I, Sattentau Q, Gershoni JM. 2000. Expansion of epitope cross-reactivity by anti-idiotype modulation of the primary humoral response. Mol Immunol, 37 (1-2), pp. 53-58. | Show Abstract | Read more

The primary humoral response produces antigen-specific antibodies so to clear the initial infection, and generates a population of corresponding memory cells to prevent infection by future encounters with the same pathogen. The continuous genetic modification of a pathogen's exterior, however, is one mechanism used to evade the immune defenses of its host. Here we describe a novel means, involving anti-idiotypic antibodies, by which the host can counteract such pathogen genetic alterations by modulation of its primary humoral response. An autoimmune response against primary antibodies, Ab1's, creates anti-idiotypic antibodies (Ab2's), some of which (designated Ab2alpha) are able to bind the Ab1/antigen complex. We have discovered that binding of Ab2alpha to its corresponding Ab1 can expand Ab1's ability to bind variations of its antigen. This expanded epitope cross-reactivity is shown not only to increase the binding activity of Ab1 but also its ability to neutralize a variant infectious virus. MAb M77 is an Ab1, which is highly strain-specific for the HIV-1 envelope protein gp120(IIIB). This Ab1 can be rendered cross-reactive and neutralizing for an otherwise resistant HIV strain by its interaction with a unique anti-idiotypic Ab2alpha (GV12). Furthermore, molecular characterization of this expanded cross-reactivity was accomplished using combinatorial phage display peptide libraries.

Xiao X, Wu L, Stantchev TS, Feng YR, Ugolini S, Chen H, Shen Z, Riley JL, Broder CC, Sattentau QJ, Dimitrov DS. 1999. Constitutive cell surface association between CD4 and CCR5. Proc Natl Acad Sci U S A, 96 (13), pp. 7496-7501. | Show Abstract | Read more

HIV-1 entry into cells involves formation of a complex between gp120 of the viral envelope glycoprotein (Env), a receptor (CD4), and a coreceptor. For most strains of HIV, this coreceptor is CCR5. Here, we provide evidence that CD4 is specifically associated with CCR5 in the absence of gp120 or any other receptor-specific ligand. The amount of CD4 coimmunoprecipitated with CCR5 was significantly higher than that with the other major HIV coreceptor, CXCR4, and in contrast to CXCR4 the CD4-CCR5 coimmunoprecipitation was not significantly increased by gp120. The CD4-CCR5 interaction probably takes place via the second extracellular loop of CCR5 and the first two domains of CD4. It can be inhibited by CCR5- and CD4-specific antibodies that interfere with HIV-1 infection, indicating a possible role in virus entry. These findings suggest a possible pathway of HIV-1 evolution and development of immunopathogenicity, a potential new target for antiretroviral drugs and a tool for development of vaccines based on Env-CD4-CCR5 complexes. The constitutive association of a seven-transmembrane-domain G protein-coupled receptor with another receptor also indicates new possibilities for cross-talk between cell surface receptors.

Esser MT, Mori T, Mondor I, Sattentau QJ, Dey B, Berger EA, Boyd MR, Lifson JD. 1999. Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J Virol, 73 (5), pp. 4360-4371. | Show Abstract

Cyanovirin-N (CV-N), an 11-kDa protein isolated from the cyanobacterium Nostoc ellipsosporum, potently inactivates diverse strains of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus. While it has been well established that the viral surface envelope glycoprotein gp120 is a molecular target of CV-N, the detailed mechanism of action is of further interest. We compared matched native and CV-N-treated virus preparations in a panel of assays that measure viral replication, assessing successive stages of the viral life cycle. CV-N-treated virions failed to infect cells as detected by p24 production and quantitative PCR for HIV-1 reverse transcription products, whereas treatment of the target cells did not block infection, confirming that CV-N acts at the level of the virus, not the target cell, to abort the initial infection process. Compared to native HIV-1 preparations, CV-N-treated HIV-1 virions showed impaired CD4-dependent binding to CD4(+) T cells and did not mediate "fusion from without" of CD4(+) target cells. CV-N also blocked HIV envelope glycoprotein Env-induced, CD4-dependent cell-cell fusion. Mapping studies with monoclonal antibodies (MAbs) to defined epitopes on the HIV-1 envelope glycoprotein indicated that CV-N binds to gp120 in a manner that does not occlude or alter the CD4 binding site or V3 loop or other domains on gp120 recognized by defined MAbs and does not interfere with soluble CD4-induced conformational changes in gp120. Binding of CV-N to soluble gp120 or virions inhibited subsequent binding of the unique neutralizing MAb 2G12, which recognizes a glycosylation-dependent epitope. However, prior binding of 2G12 MAb to gp120 did not block subsequent binding by CV-N. These results help clarify the mechanism of action of CV-N and suggest that the compound may act in part by preventing essential interactions between the envelope glycoprotein and target cell receptors. This proposed mechanism is consistent with the extensive activity profile of CV-N against numerous isolates of HIV-1 and other lentiviruses and supports the potential broad utility of this protein as a microbicide to prevent the sexual transmission of HIV.

Ugolini S, Mondor I, Sattentau QJ. 1999. HIV-1 attachment: another look. Trends Microbiol, 7 (4), pp. 144-149. | Show Abstract | Read more

HIV-1 attachment to host cells is generally considered to take place via high-affinity binding between CD4 and gp120. However, the binding of virion-associated gp120 to cellular CD4 is often weak, and most cell types that are permissive for HIV-1 infection express little CD4. Thus, other interactions between the virion and the cell surface could dominate the attachment process.

Parren PW, Moore JP, Burton DR, Sattentau QJ. 1999. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS, 13 Suppl A pp. S137-S162.

Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW, Vasquez GM, Wiltrout TA, Chertova E, Grimes MK, Sattentau Q et al. 1998. Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol, 72 (10), pp. 7992-8001. | Show Abstract

Whole inactivated viral particles have been successfully used as vaccines for some viruses, but procedures historically used for inactivation can denature virion proteins. Results have been inconsistent, with enhancement of disease rather than protection seen in some notable instances following vaccination. We used the compound 2,2'-dithiodipyridine (aldrithiol-2; AT-2) to covalently modify the essential zinc fingers in the nucleocapsid (NC) protein of human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) virions, thereby inactivating infectivity. The inactivated virus was not detectably infectious in vitro (up to 5 log units of inactivation). However, in contrast to virions inactivated by conventional methods such as heat or formalin treatment, viral and host cell-derived proteins on virion surfaces retained conformational and functional integrity. Thus, immunoprecipitation of AT-2-treated virions was comparable to precipitation of matched untreated virus, even when using antibodies to conformational determinants on gp120. AT-2 inactivated virions bound to CD4(+) target cells and mediated virus-induced, CD4-dependent "fusion from without" comparably to native virions. However, viral entry assays demonstrated that the viral life cycle of AT-2-treated virions was arrested before initiation of reverse transcription. The major histocompatibility complex (MHC) class II molecules on the surface of AT-2-treated virions produced from MHC class II-expressing cells retained the ability to support class II-dependent, superantigen-triggered proliferative responses by resting T lymphocytes. These findings indicate that inactivation via this method results in elimination of infectivity with preservation of conformational and functional integrity of virion surface proteins, including both virally encoded determinants and proteins derived from the host cells in which the virus was produced. Such inactivated virions should provide a promising candidate vaccine antigen and a useful reagent for experimentally probing the postulated involvement of virion surface proteins in indirect mechanisms of HIV-1 pathogenesis.

Mondor I, Moulard M, Ugolini S, Klasse PJ, Hoxie J, Amara A, Delaunay T, Wyatt R, Sodroski J, Sattentau QJ. 1998. Interactions among HIV gp120, CD4, and CXCR4: dependence on CD4 expression level, gp120 viral origin, conservation of the gp120 COOH- and NH2-termini and V1/V2 and V3 loops, and sensitivity to neutralizing antibodies. Virology, 248 (2), pp. 394-405. | Show Abstract | Read more

The binding of HIV-derived recombinant soluble (s)gp120 to the CD4(+)/CXCR4(+) A3.01 T cell line inhibits the binding of the CXCR4-specific monoclonal antibodies 12G5, which interacts with the second extracellular loop, and 6H8, which binds the NH2 terminus. We have used this as an assay to analyse the interaction of recombinant sgp120 from diverse viral origins with CXCR4. The strength of the interaction between sgp120 and CXCR4 correlated with sgp120 affinity for the CD4-CXCR4 complex, and the interaction of sgp120MN and sgp120IIIB with CXCR4 was highly dependent on the level of CD4 expressed on a variety of different T cell lines. sgp120 from X4, R5X4, and R5 viruses interacted with CXCR4, although the R5 sgp120-CXCR4 interactions were weaker than those of the other gp120s. The interaction of sgp120IIIB or sgp120MN with CXCR4 was inhibited by neutralizing monoclonal antibodies that prevent the sgp120-CD4 interaction but also by antibodies specific for the gp120 V2 and V3 loops, the CD4-induced epitope and the 2G12 epitope, which interfere weakly or not at all with CD4-sgp120 binding. The binding to A3.01 cells of wild-type sgp120HxB2, but not of sgp120 deleted in the COOH and NH2 termini, interfered with 12G5 binding in a dose-dependent manner. Further deletion of the V1 and V2 loops restored CXCR4 binding activity, but additional removal of the V3 loop eliminated the gp120-CXCR4 interaction, without decreasing the affinity between mutated sgp120 and CD4. Taken together, these results demonstrate that the interactions between sgp120 and CXCR4 are globally similar to those previously observed between sgp120 and CCR5, with some apparent differences in the strength of the sgp120-CXCR4 interactions and their dependence on CD4.

Sattentau QJ. 1998. HIV gp120: double lock strategy foils host defences. Structure, 6 (8), pp. 945-949. | Show Abstract | Read more

The recent determination of the structure of a complex formed between the HIV-1 glycoprotein gp120, CD4 and an antibody fragment has revealed new mechanisms for viral evasion of the immune response and shed light on how the virus enters target cells. The results of this work, together with related biochemical studies, may assist in the future design of therapeutic strategies against HIV-1 infection.

Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, Denisova G, Gershoni J, Robinson J, Moore J, Sodroski J. 1998. CD4-Induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol, 72 (6), pp. 4694-4703. | Show Abstract

Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.

Mondor I, Ugolini S, Sattentau QJ. 1998. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J Virol, 72 (5), pp. 3623-3634. | Show Abstract

The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR- cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4- sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4- HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions.

Parren PW, Mondor I, Naniche D, Ditzel HJ, Klasse PJ, Burton DR, Sattentau QJ. 1998. Neutralization of human immunodeficiency virus type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J Virol, 72 (5), pp. 3512-3519. | Show Abstract

We investigated the relative importance of binding site occupancy and epitope specificity in antibody neutralization of human immunodeficiency virus (HIV) type 1 (HIV-1). The neutralization of a T-cell-line-adapted HIV-1 isolate (MN) was analyzed with a number of monovalent recombinant Fab fragments (Fabs) and monoclonal antibodies with a range of specificities covering all confirmed gp120-specific neutralization epitopes. Binding of Fabs to recombinant monomeric gp120 was determined by surface plasmon resonance, and binding of Fabs and whole antibodies to functional oligomeric gp120 was determined by indirect immunofluorescence and flow cytometry on HIV-infected cells. An excellent correlation between neutralization and oligomeric gp120 binding was observed, and a lack of correlation with monomeric gp120 binding was confirmed. A similar degree of correlation was observed between oligomeric gp120 binding and neutralization with a T-cell-line-adapted HIV-1 molecular clone (Hx10). The ratios of oligomer binding/neutralization titer fell, in general, within a relatively narrow range for antibodies to different neutralization epitopes. These results suggest that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Models to account for these observations are proposed.

Berger EA, Doms RW, Fenyö EM, Korber BT, Littman DR, Moore JP, Sattentau QJ, Schuitemaker H, Sodroski J, Weiss RA. 1998. A new classification for HIV-1. Nature, 391 (6664), pp. 240. | Read more

Ugolini S, Mondor I, Parren PW, Burton DR, Tilley SA, Klasse PJ, Sattentau QJ. 1997. Inhibition of virus attachment to CD4+ target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. J Exp Med, 186 (8), pp. 1287-1298. | Show Abstract | Read more

Antibody-mediated neutralization of human immunodeficiency virus type-1 (HIV-1) is thought to function by at least two distinct mechanisms: inhibition of virus-receptor binding, and interference with events after binding, such as virus-cell membrane fusion. Here we show, by the use of a novel virus-cell binding assay, that soluble CD4 and monoclonal antibodies to all confirmed glycoprotein (gp)120 neutralizing epitopes, including the CD4 binding site and the V2 and V3 loops, inhibit the adsorption of two T cell line-adapted HIV-1 viruses to CD4+ cells. A correlation between the inhibition of virus binding and virus neutralization was observed for soluble CD4 and all anti-gp120 antibodies, indicating that this is a major mechanism of HIV neutralization. By contrast, antibodies specific for regions of gp120 other than the CD4 binding site showed little or no inhibition of either soluble gp120 binding to CD4+ cells or soluble CD4 binding to HIV-infected cells, implying that this effect is specific to the virion-cell interaction. However, inhibition of HIV-1 attachment to cells is not a universal mechanism of neutralization, since an anti-gp41 antibody did not inhibit virus-cell binding at neutralizing concentrations, implying activity after virus-cell binding.

Ugolini S, Moulard M, Mondor I, Barois N, Demandolx D, Hoxie J, Brelot A, Alizon M, Davoust J, Sattentau QJ. 1997. HIV-1 gp120 induces an association between CD4 and the chemokine receptor CXCR4. J Immunol, 159 (6), pp. 3000-3008. | Show Abstract

For efficient entry into target cells, certain T cell-tropic HIV-1 isolates require both CD4 and the coreceptor CXCR4. However, the molecular interactions among CD4, CXCR4, and the HIV-1 envelope glycoproteins are only now being elucidated. Here we show that the binding of soluble gp120 from one macrophage-tropic and four T cell-tropic viruses to a CD4+, but not to a CD4-, T cell line, decreased the binding of an mAb specific for CXCR4 to its epitope, implying an interaction among gp120, CD4, and CXCR4. To confirm such an interaction, we conducted double- and triple-color confocal laser scanning microscopy on CD4+/CXCR4+ cells and determined the extent of CD4 and CXCR4 colocalization by a semiquantitative analysis. In the absence of gp120, a low level of constitutive colocalization between CD4 and CXCR4 was observed. Treatment with T cell-tropic-derived gp120 and, to a lesser extent, macrophage-tropic-derived gp120, increased the colocalization of CD4 with CXCR4, and triple staining indicated that gp120 was associated with the CD4-CXCR4 complexes. Cocapping of the gp120-CD4-CXCR4 complexes at 37 degrees C resulted in the cointernalization of a proportion of the gp120-CXCR4 complexes into intracellular vesicles. These data demonstrate that the binding of gp120 to CD4+ T cells induces the formation of a trimolecular complex consisting of gp120, CD4, and the HIV-1 coreceptor molecule CXCR4.

Parren PWHI, Gauduin MC, Koup RA, Poignard P, Sattentau QJ, Fisicaro P, Burton DR. 1997. Relevance of the antibody response against human immunodeficiency virus type 1 envelope to vaccine design (vol 57, pg 105, 1997) IMMUNOLOGY LETTERS, 58 (2), pp. U3-+.

Parren PW, Gauduin MC, Koup RA, Poignard P, Sattentau QJ, Fisicaro P, Burton DR. 1997. Erratum to "Relevance of the antibody response against human immunodeficiency virus type 1 envelope to vaccine design". Immunol Lett, 58 (2), pp. 125-132. | Show Abstract | Read more

Understanding the antibody response in HIV-1 infection is important to vaccine design. We have studied the antibody response to HIV-1 envelope at the molecular level and determined the characteristics of neutralizing and non-neutralizing antibodies. These antibodies were isolated from phage display libraries prepared from long-term seropositive asymptomatic individuals. The HIV-1 envelope is presented to the immune system in several antigenically distinct configurations: unprocessed gp160, gp120 and gp41 subunits and native envelope, each of which may be important in eliciting an antibody response in HIV-1 infection. The antibodies tested characteristically had poor affinities for native envelope as expressed on the surface of virions or infected cells, but had high affinities against non-native forms of HIV-1 envelope (viral debris). An exceptionally potent neutralizing antibody in contrast, bound native envelope with equivalent or somewhat higher affinity than this. This indicates that the antibody response in HIV-1 infection is principally elicited by viral debris rather than virions, and that these antibodies bind and neutralize viruses sub-optimally. Potential vaccines should be designed to elicit responses against native envelope.

Parren PWHI, Burton DR, Sattentau QJ. 1997. HIV-1 antibody - Debris or virion? (vol 3, pg 366, 1997) NATURE MEDICINE, 3 (6), pp. 591-591. | Read more

Parren PW, Burton DR, Sattentau QJ. 1997. HIV-1 antibody--debris or virion? Nat Med, 3 (4), pp. 366-367. | Read more

Gluschankof P, Mondor I, Gelderblom HR, Sattentau QJ. 1997. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology, 230 (1), pp. 125-133. | Show Abstract | Read more

During preliminary experiments to establish the proportion of virus-coded p24 protein to virus membrane-associated HLA-DR in gradient-enriched HIV-1 preparations, we became aware of a large variability between experiments. In order to determine whether HLA-DR-containing cellular material was contaminating the virus preparations, we carried out enrichment by gradient centrifugation of clarified supernatants from noninfected cells and tested this material for HLA-DR content. We found that, independently of the cell type used, gradient enrichment resulted in the isolation of large quantities of HLA-DR-containing material which banded at a density overlapping that of infectious HIV. Electron microscopy of gradient-enriched preparations from supernatants of virus-infected cells revealed an excess of vesicles with a size range of about 50-500 nm, as opposed to a minor population of virus particles of about 100 nm. Electron micrographs of infected cells showed polarized vesiculation of the cell membrane, and virus budding was frequently colocalized with nonviral membrane vesiculation. Analysis of the cellular molecules present in the fractions containing virus or exclusively cellular material demonstrated that virus and cellular vesicles share several cellular antigens, with the exception of CD43 and CD63, found mainly at the virus surface, and HLA-DQ, which was found only in the cellular vesicles.

Denisova G, Raviv D, Mondor I, Sattentau QJ, Gershoni JM. 1997. Conformational transitions in CD4 due to complexation with HIV envelope glycoprotein gp120. J Immunol, 158 (3), pp. 1157-1164. | Show Abstract

The binding of the surface envelope glycoprotein gp120 to its receptor, CD4, has been well characterized and is the primary basis for the cell tropism of HIV. In this study, the interaction between recombinant soluble CD4 and native membrane-associated CD4 with gp120 is probed by the use of mAbs. Complexation of gp120 with both forms of CD4 induces conformational epitopes that can be defined with specific mAbs. CG1, CG7, and CG8 are three novel mAbs that have a distinct preference for CD4 complexed over noncomplexed with gp120. The epitopes of these unique mAbs were mapped by cross-inhibition with previously characterized mAbs to a region encompassing the CDR2 and CDR3 loops in domain 1 of CD4. Systematic analysis of CG mAbs binding to CD4 and CD4/gp120 complex delineates a region in the D1 domain of CD4 that undergoes conformational rearrangements upon gp120 binding to its receptor.

Simon JH, Stumbles P, Signoret N, Somoza C, Puklavec M, Sattentau QJ, Barclay AN, James W. 1997. Role of CD4 epitopes outside the gp120-binding site during entry of human immunodeficiency virus type 1. J Virol, 71 (2), pp. 1476-1484. | Show Abstract

CD4 is the primary receptor for human immunodeficiency virus (HIV). The binding site for the surface glycoprotein of HIV type 1 (HIV-1), gp120, has been mapped to the C'-C" region of domain 1 of CD4. Previously, we have shown that a mutant of rat CD4, in which this region was exchanged for that of human CD4, is able to mediate infection of human cells by HIV-1, suggesting that essential interactions between HIV and CD4 are confined to this region. Our observations appeared to conflict with mutagenesis and antibody studies which implicate regions of CD4 outside the gp120-binding site in postbinding events during viral entry. In order to resolve this issue, we have utilized a panel of anti-rat CD4 monoclonal antibodies in conjunction with the rat-human chimeric CD4 to distinguish sequence-specific from steric effects. We find that several antibodies to rat CD4 inhibit HIV infection in cells expressing the chimeric CD4 and that this is probably due to steric hinderance. In addition, we demonstrate that replacement of the rat CDR3-like region with its human homolog does not increase the affinity of the rat-human chimeric CD4 for gp120 or affect the exposure of gp41 following binding to CD4, providing further evidence that this region does not play a crucial role during entry of virus.

Signoret N, de Jong J, Goudsmit J, Sattentau QJ. 1997. Mutations within the CD4-CDR-3-like loop allow replication in an immortalized T cell line of HIV type 1 viruses chimeric for envelope glycoproteins containing non-syncytium-inducing V3 loops. AIDS Res Hum Retroviruses, 13 (2), pp. 121-123. | Read more

Signoret N, De Jong J, Goudsmit J, Sattentau QJ. 1997. Letter to the editor: Mutations within the CD4-CDR-3-like loop allow replication in an immortalized T cell line of HIV type 1 viruses chimeric for envelope glycoproteins containing non-syncytium-inducing V3 loops AIDS Research and Human Retroviruses, 13 (2), pp. 121-124.

Sattentau QJ. 1996. Neutralization of HIV-1 by antibody. Curr Opin Immunol, 8 (4), pp. 540-545. | Show Abstract | Read more

The humoral immune response to HIV-1 has been extensively studied over the past few years and considerable advances have been made in understanding the dynamics and specificity of the neutralizing antibody component during and after seroconversion. Despite this, there is still no clear understanding of the role of neutralizing antibodies in controlling or preventing HIV-1 infection. Candidate vaccines have been based on immunogens designed to elicit a neutralizing response, but the recent vaccine trial failures force us to reconsider the role of neutralizing antibodies in HIV-1 infection and the type of vaccine preparation used.

Klasse PJ, Sattentau QJ. 1996. Altered CD4 interactions of HIV type 1 LAI variants selected for the capacity to induce membrane fusion in the presence of a monoclonal antibody to domain 2 of CD4. AIDS Res Hum Retroviruses, 12 (11), pp. 1015-1021. | Show Abstract | Read more

We selected HIV-1-LAI variants with the ability to induce syncytium formation of C8166 cells in the presence of a monoclonal antibody (MAb), 5A8, to domain 2 of CD4. Five biologically cloned variants with at least 60-fold greater resistance than wild type to 5A8-mediated inhibition of syncytium formation were obtained. The variants exhibited reduced relative sensitivity to inhibition of syncytium formation and virus infection, not only by the selecting anti-domain 2 MAb, but also by MAbs to domains 1 and 3 of CD4. By contrast, the sensitivity of these variants to neutralization by soluble CD4 and bivalent CD4-IgG was greater than for the parental clone. The affinities of soluble CD4 for Env protein, in either solubilized or membrane-anchored form, did not differ significantly between the variants and LAI. Analyses of sCD4-induced exposure of the transmembrane protein at 4 and 37 degrees C suggested, however, that the variants had acquired an increased susceptibility to the triggering of conformational changes in their Env oligomers at 37 degrees C. This may represent a mechanism of both the increased resistance to the CD4 MAbs and the enhanced sensitivity to soluble CD4.

Signoret N, Blanc-Zouaoui D, Kwong PD, Sattentau QJ. 1996. Selective effects of electrostatic changes in the CD4 CDR-3-like loop on infection by different human immunodeficiency virus type 1 isolates. AIDS Res Hum Retroviruses, 12 (11), pp. 1001-1013. | Show Abstract | Read more

The role of the CDR-3-like loop of the first domain of the CD4 molecule in infection by the human immunodeficiency virus type 1 (HIV-1) is controversial. In an attempt to determine whether the strong negative charge in the CDR-3-like loop influences HIV-1 infection we have substituted by mutagenesis negative for positively charged residues at position 87/88 and 91/92. These mutations were shown to have no obvious effect on CD4 conformation outside of the CDR-3-like loop. Infection of cells expressing the E87K/D88K substitution mutant resulted in a selective reduction in infectivity for certain HIV-1 viruses compared to cells expressing wile-type CD4. Viruses Hx10, HxB2, and MN were 4- to 13-fold less efficient at infecting the E87K/D88K mutant, whereas SF2, RF, and NDK yielded an efficiency of infection similar to, or slightly greater than, that of the wild type. To investigate the step at which infectivity was selectively reduced, we compared early events in the life cycles of Hx10 and SF2 viruses using PCR entry and gp120-binding assays. Both gp120 binding and virus entry were reduced for Hx10 on the mutant CD4-expressing cells as compared to wild-type CD4-expressing cells, whereas no difference was seen in either assay with SF2. Although relatively small in magnitude, the contribution of the CDR-3-like loop to the overall CD4-gp120 interaction may serve to modify the binding and entry of certain virus isolates.

Poignard P, Klasse PJ, Sattentau QJ. 1996. Antibody neutralization of HIV-1. Immunol Today, 17 (5), pp. 239-246. | Show Abstract | Read more

Neutralizing antibodies are a major component of host defense against viruses, and appear to be particularly important in limiting the spread of cell-free virus. Results from vaccine trials in animal models suggest that these antibodies may contribute to protection against human immunodeficiency virus (HIV) infection. Here, Pascal Poignard and colleagues discuss recent developments in this area, with particular emphasis on the measurement, specificity and mechanism of the antibody response, and its significance for vaccine production.

Weiss R, Paoletti E, Jarrett O, Stott J, Esparza J, Montagnier L, Essex M, Kurth R, Bangham C, deThe G et al. 1996. Roundtable: can experience with veterinary retroviral vaccines be applied to the human situation? AIDS Res Hum Retroviruses, 12 (5), pp. 365-373. | Read more

Poignard P, Fouts T, Naniche D, Moore JP, Sattentau QJ. 1996. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J Exp Med, 183 (2), pp. 473-484. | Show Abstract | Read more

The spectrum of the anti-human immunodeficiency virus (HIV) neutralizing immune response has been analyzed by the production and characterization of monoclonal antibodies (mAbs) to the viral envelope glycoproteins, gp41 and gp120. Little is known, however, about the neutralization mechanism of these antibodies. Here we show that the binding of a group of neutralizing mAbs that react with regions of the gp120 molecule associated with and including the V2 and V3 loops, the C4 domain and supporting structures, induce the dissociation of gp120 from gp41 on cells infected with the T cell line-adapted HIV-1 molecular clone Hx10. Similar to soluble receptor-induced dissociation of gp120 from gp41, the antibody-induced dissociation is dose- and time-dependent. By contrast, mAbs binding to discontinuous epitopes overlapping the CD4 binding site do not induce gp120 dissociation, implying that mAb induced conformational changes in gp120 are epitope specific, and that HIV neutralization probably involves several mechanisms.

Sattentau QJ. 1996. The role of the envelope glycoproteins in HIV-1 transmission and pathogenesis PERSPECTIVES IN DRUG DISCOVERY AND DESIGN, 5 (1), pp. 1-16. | Show Abstract | Read more

The HIV envelope glycoproteins are central in the transmission of HIV-1, and are strongly implicated in the pathogenic effects of this virus. As we move through the second decade of HIV research, we are faced with the fact that we have yet to adequately describe the molecular events that determine the outcome of HIV infection. Despite having a detailed understanding of certain aspects of the virus-host interaction, a comprehensive overview is lacking. In the absence of such an overview, effective and long-lasting therapeutic treatment will be difficult to put into practice. In this review, the transmission and pathogenesis of HIV infection are discussed in the context of current developments according to our understanding of the structure and function of the HIV envelope glycoproteins. The potential for development or improvement of therapeutic strategies, based on targeting the envelope glycoproteins, is addressed.

Sattentau QJ. 1995. Conservation of HIV-1 gp120 neutralizing epitopes after formalin inactivation. AIDS, 9 (12), pp. 1383-1385. | Read more

Sattentau QJ, Moore JP. 1995. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J Exp Med, 182 (1), pp. 185-196. | Show Abstract | Read more

The major target of the neutralizing antibody response to infection by the human immunodeficiency virus type 1 (HIV-1) is the outer envelope glycoprotein, gp120. The spectrum of HIV-1 neutralization specificity is currently represented by monoclonal antibodies (mAbs) that can be divided broadly into five groups. We have studied the binding of these mAbs to functional oligomeric and soluble monomeric gp120 derived from the molecular clone of a cell line-adapted isolate of HIV-1, and compared these binding properties with virus neutralization. Binding of all mAbs except those reactive with the V3 loop was much weaker to oligomeric than to monomeric gp120. This reduction in binding to oligomeric gp120 was determined mostly by a slower relative rate of association, although the dissociation rate also had some influence on relative variation in mAb affinity. Virus neutralization correlated broadly with mAb binding to the oligomeric rather than to the monomeric form of gp120, and neutralization potency was related to the estimated association rate. Thus, with the exception of the hypervariable V3 loop, regions of HIV-1 gp120 with the potential to induce a neutralization response are likely to be poorly presented for antibody recognition on the surface of cell line-adapted virions.

Sattentau QJ, Zolla-Pazner S, Poignard P. 1995. Epitope exposure on functional, oligomeric HIV-1 gp41 molecules. Virology, 206 (1), pp. 713-717. | Show Abstract | Read more

We have used cells infected with the HIV-1 molecular clone HX10 to study the binding of monoclonal antibodies (mAbs) to different epitopes within the extracellular domain of the HIV-1 transmembrane glycoprotein gp41. Gp41 mAb binding to the infected cells at 4 degrees was variable but weaker than the binding of an anti-gp120/V3 loop mAb and increased substantially for three of the gp41 antibodies at 37 degrees. Treatment of the cells with soluble CD4 (sCD4) at 37 degrees increased gp41 mAb binding to epitopes spanning residues 521-663, implying that these regions had probably been masked by gp120, which following interaction with sCD4 had subsequently dissociated from gp41. By contrast, the binding of a mAb to residues 662-667 which form a neutralization epitope was reduced by sCD4 binding. Another region which has been described as containing a neutralization epitope spans residues 725-750. MAbs to this region bound equally well to noninfected and HIV-infected cells, and binding was not increased in the presence of sCD4. These data strongly imply that this epitope is not exposed on the external surface of the membrane, a finding in accord with the proposed cytoplasmic localization of this region.

Moore JP, Cao Y, Qing L, Sattentau QJ, Pyati J, Koduri R, Robinson J, Barbas CF, Burton DR, Ho DD. 1995. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol, 69 (1), pp. 101-109. | Show Abstract

A panel of anti-gp120 human monoclonal antibodies (HuMAbs), CD4-IgG, and sera from people infected with human immunodeficiency virus type 1 (HIV-1) was tested for neutralization of nine primary HIV-1 isolates, one molecularly cloned primary strain (JR-CSF), and two strains (IIIB and MN) adapted for growth in transformed T-cell lines. All the viruses were grown in mitogen-stimulated peripheral blood mononuclear cells and were tested for their ability to infect these cells in the presence and absence of the reagents mentioned above. In general, the primary isolates were relatively resistant to neutralization by the MAbs tested, compared with the T-cell line-adapted strains. However, one HuMAb, IgG1b12, was able to neutralize most of the primary isolates at concentrations of < or = 1 microgram/ml. Usually, the inability of a HuMAb to neutralize a primary isolate was not due merely to the absence of the antibody epitope from the virus; the majority of the HuMAbs bound with high affinity to monomeric gp120 molecules derived from various strains but neutralized the viruses inefficiently. We infer therefore that the mechanism of resistance of primary isolates to most neutralizing antibodies is complex, and we suggest that it involves an inaccessibility of antibody binding sites in the context of the native glycoprotein complex on the virion. Such a mechanism would parallel that which was previously postulated for soluble CD4 resistance. We conclude that studies of HIV-1 neutralization that rely on strains adapted to growth in transformed T-cell lines yield the misleading impression that HIV-1 is readily neutralized. The more relevant primary HIV-1 isolates are relatively resistant to neutralization, although these isolates can be potently neutralized by a subset of human polyclonal or monoclonal antibodies.

Shotton C, Arnold C, Sattentau Q, Sodroski J, McKeating JA. 1995. Identification and characterization of monoclonal antibodies specific for polymorphic antigenic determinants within the V2 region of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol, 69 (1), pp. 222-230. | Show Abstract

We have identified six monoclonal antibodies (MAbs) mapping to both linear and conformation-dependent epitopes within the V2 region of the human immunodeficiency virus type 1 clone HXB10. Three of the MAbs (12b, 66c, and 66a) were able to neutralize the molecular clones HXB10 and HXB2, with titers in the range of 9.5 to 20.0 micrograms/ml. MAbs mapping to the crown of the V2 loop (12b, 60b, and 74) bound poorly to cell surface-expressed oligomeric gp120, suggesting an explanation for the poor or negligible neutralizing activity of MAbs to this region. In contrast, MAbs 12b and 60b demonstrated good reactivity with recombinant gp120 in an enzyme-linked immunosorbent assay format, suggesting differential epitope exposure between the recombinant and native forms of gp120. Cross-competition analysis of these MAbs and additional V1V2 MAbs for gp120 binding enabled us to assign the MAbs to six groups (A to F). Selection of neutralization escape mutants with MAbs 10/76b and 11/68b, belonging to nonoverlapping competition groups, identified amino acid changes at residues 165 (I to T) and 185 (D to N), respectively. Interestingly, these escape variants remained sensitive to neutralization by the nonselecting V2 MAbs. All MAbs demonstrated good recognition of IIIB viral gp120 yet failed to neutralize nonclonal stocks of IIIB. In addition, MAbs 12b and 62c bound MN and RF viral gp120, respectively, yet failed to neutralize the respective isolates. Cloning and expression of a library of gp120 and V1V2 fragments from IIIB-, MN-, and RF-infected H9 cultures identified a number of polymorphic sites, resulting in antigenic variation and subsequent loss of V2 MAb recognition. In contrast, the V3 region from the clones of the same isolates showed no amino acid changes, suggesting that the V2 region is polymorphic in long-term-passaged laboratory isolates and may account for the reduced antibody recognition observed.

Lazaro I, Naniche D, Signoret N, Bernard AM, Marguet D, Klatzmann D, Dragic T, Alizon M, Sattentau Q. 1994. Factors involved in entry of the human immunodeficiency virus type 1 into permissive cells: lack of evidence of a role for CD26. J Virol, 68 (10), pp. 6535-6546. | Show Abstract

It has been proposed recently that the cell surface peptidase CD26 acts in concert with CD4, the human immunodeficiency virus (HIV) primary receptor molecule, to mediate HIV entry into permissive cells. We have failed to detect significant levels of CD26 cell surface expression and enzymatic activity in a number of commonly propagated human CD4+ cell lines, although CD26 mRNA was present at very low levels, as detected by reverse transcription PCR. No relationship existed between the expression of CD26 and the ability of these cells to be infected with HIV or to fuse to form syncytia. We have tested two inhibitors of CD26 enzymatic activity and several anti-CD26 monoclonal antibodies and found that they inhibit neither HIV infection nor HIV-induced syncytium formation. NIH 3T3 cells stably transfected with the cDNAs for human CD4 and CD26 expressed these molecules at the cell surface and had CD26 enzymatic activity. Inoculation of the double transfectants with HIV did not result in virus entry above the background level, as verified by PCR amplification of viral DNA. We were unable to recover infectious virus from the HIV-inoculated NIH 3T3 double transfectants either by transfer of supernatants or by cocultivation with human CD4+ indicator cells. Moreover, the transfectants did not fuse with HIV-infected cells to form syncytia, nor were syncytia observed in HIV-inoculated cultures. These results are inconsistent with the CD26 molecule being a cofactor for entry of HIV in CD4+ cells.

Moore JP, Sattentau QJ, Wyatt R, Sodroski J. 1994. Probing the structure of the human immunodeficiency virus surface glycoprotein gp120 with a panel of monoclonal antibodies. J Virol, 68 (1), pp. 469-484. | Show Abstract

We have probed the structures of monomeric and oligomeric gp120 glycoproteins from the LAI isolate of human immunodeficiency virus type 1 (HIV-1) with a panel of monoclonal antibodies (MAbs); most of these MAbs are directed against continuous epitopes. On native monomeric gp120, most of the first conserved (C1) domain is accessible to MAbs, although some regions of C1 are relatively inaccessible. All of the MAbs directed against the C2, C3, and C5 domains bind preferentially to denatured monomeric gp120, indicating that these regions of gp120 are poorly accessible on the native monomer, although the extreme C terminus in C5 is well exposed. Segments of the V1, V2, and V3 loops are exposed on the surface of monomeric gp120, although the base of the V3 loop is inaccessible. A portion of C4 is also available for MAb binding on monomeric gp120, as is the extreme C terminus in C5. However, on oligomeric gp120-gp41 complexes, only the V2 and V3 loops (and perhaps V1) are well exposed and a segment of the C4 region is partially exposed; continuous epitopes in C1 and C5 that are accessible to antibodies on monomeric gp120 are occluded on the oligomer. Although deletion of the V1, V2, and V3 loops resulted in increased exposure of several discontinuous epitopes overlapping the CD4-binding site, the exposure of most continuous epitopes on the monomeric gp120 glycoprotein was not affected. These results imply a HIV-1 gp120 structure in which the conserved continuous determinants are inaccessible; in some cases, this inaccessibility is due to intramolecular interactions between conserved regions, and in other cases, it is due to intermolecular interactions with other components of the glycoprotein spike. These findings have implications for the design of subunit vaccines based on gp120.

Moore JP, Sattentau QJ. 1993. Detecting SIV gp120 and its interaction with soluble CD4 by ELISA. AIDS Res Hum Retroviruses, 9 (12), pp. 1297-1299. | Read more

Signoret N, Poignard P, Blanc D, Sattentau QJ. 1993. Human and simian immunodeficiency viruses: virus-receptor interactions. Trends Microbiol, 1 (9), pp. 328-333. | Show Abstract | Read more

The major cellular receptor for the primate immunodeficiency viruses is the CD4 molecule. As well as mediating virion attachment to the cell surface, CD4 is thought to activate the viral fusion pathway. CD4 is not, however, sufficient for viral entry; other molecules are probably involved, and in certain circumstances these may substitute for CD4. Viral tropism and cytopathogenicity are also influenced by receptor interactions.

Sattentau QJ, Moore JP, Vignaux F, Traincard F, Poignard P. 1993. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J Virol, 67 (12), pp. 7383-7393. | Show Abstract

We have investigated the molecular basis of biological differences observed among cell line-adapted isolates of the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and the simian immunodeficiency virus (SIV) in response to receptor binding by using a soluble form of CD4 (sCD4) as a receptor mimic. We find that sCD4 binds to the envelope glycoproteins of all of the HIV-1 isolates tested with affinities within a threefold range, whereas those of the HIV-2 and SIV isolates have relative affinities for sCD4 two- to eightfold lower than those of HIV-1. Treatment of infected cells with sCD4 induced the dissociation of gp120 from gp41 and increased the exposure of a cryptic gp41 epitope on all of the HIV-1 isolates. By contrast, neither dissociation of the outer envelope glycoprotein nor increased exposure of the transmembrane glycoprotein was observed when sCD4 bound to HIV-2- or SIV-infected cells. Moreover, immunoprecipitation with sCD4 resulted in the coprecipitation of the surface and transmembrane glycoproteins from virions of the HIV-2 and SIV isolates, whereas the surface envelope glycoprotein alone was precipitated from HIV-1. However, treatment of HIV-1-, HIV-2-, and SIV-infected cells with sCD4 did result in an increase in exposure of their V2 and V3 loops, as detected by enhanced antibody reactivity. This demonstrates that receptor binding to the outer envelope glycoprotein induces certain conformational changes which are common to all of these viruses and others which are restricted to cell line-passaged isolates of HIV-1.

Sattentau QJ, Moore JP. 1993. The role of CD4 in HIV binding and entry. Philos Trans R Soc Lond B Biol Sci, 342 (1299), pp. 59-66. | Show Abstract | Read more

The primary cellular receptor for the human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV is the CD4 antigen (Sattentau et al. 1988; Sattentau & Weiss 1988). HIV infection of CD4+ cells is initiated by binding of the virus to the cell surface, via a high-affinity interaction between the first domain of CD4 and the HIV outer envelope glycoprotein, gp120. The use of a soluble recombinant form of CD4 (sCD4) as a receptor mimic has simplified the analysis of receptor binding and post-binding events which result in virus-cell membrane fusion. With cell-line adapted isolates of HIV-1, sCD4 binding induces conformational changes in gp120, leading to the complete dissociation of gp120 from the transmembrane glycoprotein, gp41, and exposing cryptic epitopes of gp41. Similar observations have been made with cell-anchored CD4: recruitment of CD4 molecules leads to exposure of cryptic gp41 epitopes at the fusion interface between clusters of CD4 expressing and HIV-infected cells. It has therefore been proposed that CD4 binding induces exposure of fusogenic components of gp41 which mediate virus-cell membrane coalescence, a process termed receptor-mediated activation of fusion. With the related lentiviruses HIV-2 and SIV, the CD4 induced molecular rearrangements in gp120 are more subtle, implying that there is a spectrum of responses to sCD4 binding.

Moore JP, Jameson BA, Sattentau QJ, Willey R, Sodroski J. 1993. Towards a structure of the HIV-1 envelope glycoprotein gp120: an immunochemical approach. Philos Trans R Soc Lond B Biol Sci, 342 (1299), pp. 83-88. | Show Abstract | Read more

The HIV-1 surface glycoprotein gp120 binds CD4 in the initial state of virus-cell fusion. The extensive glycosylation of gp120 has thus far precluded definition of its structure by crystallographic methods. As an initial approach to a gp120 structure, the surface topology was mapped using antibodies. First, the regions of gp120 that are accessible on the surface of the native molecule, and those that are internal but exposed after denaturation, are identified. Second, epitopes for antibodies that recognize complex surface structures comprising segments of different domains are identified. Third, we define how mutations in one domain of gp120 influence the binding of antibodies to defined epitopes on other domains. These latter approaches enable us to start to understand the inter-domain interactions that contribute to the overall structure of the gp120 molecule. Information from these studies is being used to model the structures of individual gp120 domains, and the way in which these interact in the folded protein.

Moore JP, Sattentau QJ, Yoshiyama H, Thali M, Charles M, Sullivan N, Poon SW, Fung MS, Traincard F, Pinkus M. 1993. Probing the structure of the V2 domain of human immunodeficiency virus type 1 surface glycoprotein gp120 with a panel of eight monoclonal antibodies: human immune response to the V1 and V2 domains. J Virol, 67 (10), pp. 6136-6151. | Show Abstract

We have analyzed a panel of eight murine monoclonal antibodies (MAbs) that depend on the V2 domain for binding to human immunodeficiency virus type 1 (HIV-1) gp120. Each MAb is sensitive to amino acid changes within V2, and some are affected by substitutions elsewhere. With one exception, the MAbs were not reactive with peptides from the V2 region, or only poorly so. Hence their ability to bind recombinant strain IIIB gp120 depended on the preservation of native structure. Three MAbs cross-reacted with strain RF gp120, but only one cross-reacted with MN gp120, and none bound SF-2 gp120. Four MAbs neutralized HIV-1 IIIB with various potencies, and the one able to bind MN gp120 neutralized that virus. Peptide serology indicated that antibodies cross-reactive with the HxB2 V1 and V2 regions are rarely present in HIV-1-positive sera, but the relatively conserved segment between the V1 and V2 loops was recognized by antibodies in a significant fraction of sera. Antibodies able to block the binding of V2 MAbs to IIIB or MN gp120 rarely exist in sera from HIV-1-infected humans; more common in these sera are antibodies that enhance the binding of V2 MAbs to gp120. This enhancement effect of HIV-1-positive sera can be mimicked by several human MAbs to different discontinuous gp120 epitopes. Soluble CD4 enhanced binding of one V2 MAb to oligomeric gp120 but not to monomeric gp120, perhaps by inducing conformational changes in the oligomer.

Moore JP, Thali M, Jameson BA, Vignaux F, Lewis GK, Poon SW, Charles M, Fung MS, Sun B, Durda PJ. 1993. Immunochemical analysis of the gp120 surface glycoprotein of human immunodeficiency virus type 1: probing the structure of the C4 and V4 domains and the interaction of the C4 domain with the V3 loop. J Virol, 67 (8), pp. 4785-4796. | Show Abstract

We have probed the structure of the C4 and V3 domains of human immunodeficiency virus type 1 gp120 by immunochemical techniques. Monoclonal antibodies (MAbs) recognizing an exposed gp120 sequence, (E/K)VGKAMYAPP, in C4 were differentially sensitive to denaturation of gp120, implying a conformational component to some of the epitopes. The MAbs recognizing conformation-sensitive C4 structures failed to bind to a gp120 mutant with an alteration in the sequence of the V3 loop, and their binding to gp120 was inhibited by both V3 and C4 MAbs. This implies an interaction between the V3 and C4 regions of gp120, which is supported by the observation that the binding of some MAbs to the V3 loop was often enhanced by amino acid changes in an around the C4 region.

Moore J, Sattentau Q, Jameson B, Sodroski J. 1993. Monoclonal antibodies to HIV-1 gp120: a request. AIDS Res Hum Retroviruses, 9 (7), pp. 695. | Read more

MOORE JP, THALI M, JAMESON BA, LEWIS GK, SATTENTAU QJ, SODROSKI J. 1993. STRUCTURAL-ANALYSIS OF THE HIV-1 ENVELOPE GLYCOPROTEIN GP120 JOURNAL OF CELLULAR BIOCHEMISTRY, pp. 4-4.

Sattentau QJ. 1992. CD4 activation of HIV fusion. Int J Cell Cloning, 10 (6), pp. 323-332. | Show Abstract | Read more

The primary cellular receptor for the human immunodeficiency viruses type 1 (HIV-1) and type 2 (HIV-2) is the CD4 antigen. HIV infection of CD4+ cells is initiated by binding of the virus to the cell surface, via a high affinity interaction between CD4 and the HIV outer envelope glycoprotein, gp120. The development of model systems using soluble recombinant forms of CD4 (sCD4) has allowed kinetic and thermodynamic analyses of CD4 binding to gp120, and study of the post-binding events leading to virus-cell membrane fusion. It has thus been demonstrated that the affinity of sCD4 for gp120 on virions or HIV-infected cells depends on both the primary sequence and the tertiary structure of gp120 in the membrane. With cell-line adapted isolates of HIV-1, sCD4 binding induces conformational changes in gp120, leading to the complete dissociation of gp120 from the transmembrane glycoprotein, gp41, and exposing cryptic epitopes of gp41. Similar observations have been made with cell-anchored CD4; exposure of cryptic gp41 epitopes occurs at the fusion interface between clusters of CD4-expressing and HIV-infected cells. Thus, for HIV-1, CD4 induces exposure of fusogenic components of gp41 which triggers virus-cell membrane coalescence. This is termed receptor-mediated activation of fusion. With primary isolates of HIV-1 and the related lentiviruses, HIV-2 and simian immunodeficiency virus (SIV), the CD4-induced molecular rearrangements in gp120 are more subtle, implying that there is a spectrum of responses to sCD4 binding. The high-affinity binding site on CD4 for gp120 is necessary and probably sufficient for activation of HIV fusion, although other regions of CD4 may indirectly influence viral entry. There are two regions on the envelope glycoproteins which are recognized as playing a role in HIV entry: the N-terminus of gp41 and the gp120 V3 loop. The roles of these domains are discussed.

Moore JP, Sattentau QJ, Klasse PJ, Burkly LC. 1992. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol, 66 (8), pp. 4784-4793. | Show Abstract

The murine monoclonal antibody (MAb) 5A8, which is reactive with domain 2 of CD4, blocks human immunodeficiency virus type 1 (HIV-1) infection and syncytium formation of CD4+ cells (L. C. Burkly, D. Olson, R. Shapiro, G. Winkler, J. J. Rosa, D. W. Thomas, C. Williams, and P. Chisholm, J. Immunol., in press). Here we show that, in contrast to the CD4 domain 1 MAb 6H10, 5A8 and its Fab fragment do not block soluble CD4 (sCD4) binding to virions, whereas they do inhibit sCD4-induced exposure of cryptic epitopes on gp41 and dissociation of gp120 from virions. Two other MAbs, OKT4 and L120, which are reactive with domains 3 and 4 of CD4, have little or no effect on HIV-1 infection, syncytium formation, or sCD4-induced conformational changes in the envelope glycoproteins. The mechanisms of action of 5A8 and 6H10 can be further distinguished in syncytium inhibition assays: 6H10 blocks competitively, while 5A8 does not. We opine that 5A8 blocks HIV-1 infection and fusion by interfering with conformational changes in gp120/gp41 and/or CD4 that are necessary for virus-cell fusion.

Sattentau QJ, Moore JP. 1991. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med, 174 (2), pp. 407-415. | Show Abstract | Read more

The human immunodeficiency virus (HIV) binds to the surface of T lymphocytes and other cells of the immune system via a high affinity interaction between CD4 and the HIV outer envelope glycoprotein, gp120. By analogy with certain other enveloped viruses, receptor binding by HIV may be followed by exposure of the hydrophobic NH2 terminus of its transmembrane glycoprotein, gp41, and fusion of the virus and cell membranes. A similar sequence of events is thought to take place between HIV-infected and uninfected CD4+ cells, resulting in their fusion to form syncytia. In this study, we have used a soluble, recombinant form of CD4 (sCD4) to model events taking place after receptor binding by the HIV envelope glycoproteins. We demonstrate that the complexing of sCD4 with gp120 induces conformational changes within envelope glycoprotein oligomers. This was measured on HIV-1-infected cells by the increased binding of antibodies to the gp120/V3 loops, and on the surface of virions by increased cleavage of this loop by an exogenous proteinase. At 37 degrees C, these conformational changes are coordinate with the dissociation of gp120/sCD4 complexes from gp41, and the increased exposure of gp41 epitopes. At 4 degrees C, gp120 dissociation from the cell surface does not occur, but increased exposure of both gp120/V3 and gp41 epitopes is detected. We propose that these events occurring after CD4 binding are integral components of the membrane fusion reaction between HIV or HIV-infected cells and CD4+ cells.

Healey DG, Dianda L, Buck D, Schroeder K, Truneh A, Sattentau QJ, Beverley PC. 1991. A highly selected panel of anti-CD4 antibodies fails to induce anti-idiotypic antisera mediating human immunodeficiency virus neutralization. Eur J Immunol, 21 (6), pp. 1491-1498. | Show Abstract | Read more

Anti-CD4 antibodies directed to the N terminus of CD4 can inhibit human immunodeficiency virus (HIV) infection. Therefore, it has been proposed that some of these reagents may contain idiotypic determinants which conformationally model the binding site expressed on gp120. In this report, we have selected a panel of anti-CD4 monoclonal antibodies as idiotypic mimics of gp120 by employing cross-blocking techniques, and CD4 epitope mapping using site-directed mutagenesis. These studies suggest that only 4 out of the original panel of 12 would be expected to represent suitable candidates for modelling the gp120 binding site. Nevertheless, anti-idiotypic antisera raised against these antibodies failed to inhibit gp120 binding to CD4. This negative result may reflect the incomplete modelling of the virus binding site by anti-CD4, or the lack of internal image antibody in the anti-idiotypic preparations. Alternatively, the binding site on gp120 may not be accessible to antibody neutralization, excluding the possibility of an idiotypic vaccine to HIV based on anti-CD4 antibody as surrogate antigen.

Allan JS. 1991. Receptor-mediated activation of immunodeficiency viruses in viral fusion. Science, 252 (5010), pp. 1322-1323. | Read more

Truneh A, Buck D, Cassatt DR, Juszczak R, Kassis S, Ryu SE, Healey D, Sweet R, Sattentau Q. 1991. A region in domain 1 of CD4 distinct from the primary gp120 binding site is involved in HIV infection and virus-mediated fusion. J Biol Chem, 266 (9), pp. 5942-5948. | Show Abstract

The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C'' and FG. This structure is consistent with C'C'' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein.

Moore JP, McKeating JA, Norton WA, Sattentau QJ. 1991. Direct measurement of soluble CD4 binding to human immunodeficiency virus type 1 virions: gp120 dissociation and its implications for virus-cell binding and fusion reactions and their neutralization by soluble CD4. J Virol, 65 (3), pp. 1133-1140. | Show Abstract

We have analyzed the binding of soluble CD4 (sCD4) to human immunodeficiency virus type 1 (HIV-1) virions (isolates IIIB and RF) at 4 and 37 degrees C by using a combination of gel exclusion chromatography and enzyme-linked immunosorbent assay detection systems. The sCD4 binding curve at 37 degrees C indicates that the affinity of the interaction of sCD4 with gp120 on the virion surface is indistinguishable from the affinity of sCD4 for the equivalent concentration of soluble gp120. At 4 degrees C, however, the affinity of sCD4 for virion-bound gp120 but not for soluble gp120 is reduced by about 20-fold. Binding of sCD4 (greater than 0.2 microgram/ml) to virions at 37 degrees C but not 4 degrees C induces the rapid dissociation of a major proportion of gp120 from gp41 on the virion surface. This dissociation requires occupancy by sCD4 of multiple (probably two) binding sites on a gp120-gp41 oligomer. At 37 degrees C there are two components to the neutralizing action of sCD4 on HIV-1; reversible, competitive inhibition at low sCD4 concentrations (less than 0.2 microgram/ml) and essentially irreversible inhibition due to gp120 loss at higher sCD4 concentrations. At 4 degrees C, sCD4 neutralizes HIV infectivity by competitive inhibition alone. These findings may have implications for the HIV-CD4+ cell binding and fusion reactions and the mechanism by which sCD4 blocks infectivity.

Moore JP, McKeating JA, Weiss RA, Sattentau QJ. 1990. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science, 250 (4984), pp. 1139-1142. | Show Abstract | Read more

The CD4 antigen is the high affinity cellular receptor for the human immunodeficiency virus type-1 (HIV-1). Binding of recombinant soluble CD4 (sCD4) or the purified V1 domain of sCD4 to the surface glycoprotein gp120 on virions resulted in rapid dissociation of gp120 from its complex with the transmembrane glycoprotein gp41. This may represent the initial stage in virus-cell and cell-cell fusion. Shedding of gp120 from virions induced by sCD4 may also contribute to the mechanism by which these soluble receptor molecules neutralize HIV-1.

Moore JP, Sattentau QJ, Clapham PR. 1990. Enhancement of soluble CD4-mediated HIV neutralization and gp 120 binding by CD4 autoantibodies and monoclonal antibodies. AIDS Res Hum Retroviruses, 6 (11), pp. 1273-1279. | Show Abstract | Read more

We have identified 6 sera containing autoantibodies to CD4 in 174 human immunodeficiency virus-type (HIV-1) positive sera tested in an antigen-capture enzyme-linked immunosorbent assay (ELISA) using sCD4, and none in 34 HIV type 2 sera. These autoantibodies do not bind to cellular CD4, but react with sCD4 to increase its binding in ELISA to monoclonal antibodies and the HIV surface glycoprotein gp120. The effect of CD4 autoantibodies is mimicked by monoclonal antibodies to the third and fourth domains of CD4. The enhanced sCD4 binding to gp120 in ELISA is reflected by a reduction in the concentration of sCD4 required to neutralize HIV-1 and HIV-2 infection in tissue culture when CD4 autoantibodies or the relevant monoclonal antibodies were present.

Merkenschlager M, Buck D, Beverley PC, Sattentau QJ. 1990. Functional epitope analysis of the human CD4 molecule. The MHC class II-dependent activation of resting T cells is inhibited by monoclonal antibodies to CD4 regardless whether or not they recognize epitopes involved in the binding of MHC class II or HIV gp120. J Immunol, 145 (9), pp. 2839-2845. | Show Abstract

This study was designed to define regions on the human CD4 molecule important for the class II-dependent activation of resting, polyclonal CD4 T cells. With the use of mAb to known epitopes on CD4, we assayed the degree of CD4 saturation and functional effects on T cell activation over a range of antibody concentrations in parallel titration experiments. This approach allows a quantitative comparison of different reagents, regardless of parameters such as affinity for CD4. In sharp contrast to results reported for preactivated T cells and CD4 transfected T cell hybridomas, all 22 CD4 mAb tested did inhibit proliferative responses of freshly isolated CD4 T cells to MHC class II Ag. At the lowest saturating concentration of each antibody, T cell proliferation was reduced by 45 to 82%. Inhibition did not depend on antibody-induced modulation of CD4 expression. Strikingly, no correlation was found between the functional effects and the specificity of the mAb for different epitopes on CD4, such as the putative binding sites for MHC class II or HIV glycoprotein gp120.

Healey D, Dianda L, Moore JP, McDougal JS, Moore MJ, Estess P, Buck D, Kwong PD, Beverley PC, Sattentau QJ. 1990. Novel anti-CD4 monoclonal antibodies separate human immunodeficiency virus infection and fusion of CD4+ cells from virus binding. J Exp Med, 172 (4), pp. 1233-1242. | Show Abstract | Read more

Human immunodeficiency virus (HIV) binds to cells via an interaction between CD4 and the virus envelope glycoprotein, gp120. Previous studies have localized the high affinity binding site for gp120 to the first domain of CD4, and monoclonal antibodies (mAbs) reactive with this region compete with gp120 binding and thereby block virus infectivity and syncytium formation. Despite a detailed understanding of the binding of gp120 to CD4, little is known of subsequent events leading to membrane fusion and virus entry. We describe two new mAbs reactive with the third domain of CD4 that inhibit steps subsequent to virus binding critical for HIV infectivity and cell fusion. Binding of recombinant gp120 or virus to CD4 is not inhibited by these antibodies, whereas infection and syncytium formation by a number of HIV isolates are blocked. These findings demonstrate that in addition to virus binding, CD4 may have an active role in membrane fusion.

Sattentau QJ. 1990. Interactions of HIV gp120 with the CD4 molecule on lymphocytes and in the nervous system. Ann N Y Acad Sci, 594 pp. 355-361. | Read more

ARTHOS J, DEEN KC, CHAIKEN MA, SATTENTAU QJ, MADDON PJ, AXEL R, ROSENBERG M, SHATZMAN A, TRUNEH A, SWEET RW. 1990. STRUCTURAL-ANALYSIS OF THE HIV GP120 BINDING DOMAIN OF THE CD4 RECEPTOR AIDS RESEARCH AND HUMAN RETROVIRUSES, 6 (1), pp. 118-118.

Sattentau QJ, Truneh A, Arthos J, Healey D, Sternberg MJ, Beverley PC, Sweet R. 1990. Idiotype vaccines for HIV based on CD4 antibodies Idiotype networks in biology and medicine: proceedings of the Congress on Idiotype Networks in Biology and Medicine. ICS862, pp. 279-285.

Sattentau QJ. 1989. HIV infection and the immune system. Biochim Biophys Acta, 989 (3), pp. 255-268.

Spence RP, Walker J, Jarvill WM, Ferns RB, Tedder RS, Sattentau Q, Weber J, Parry NR, Highfield PE. 1989. The expression in Escherichia coli of sequences coding for the p18 protein of human immunodeficiency virus and the use of the recombinant protein in characterizing a panel of monoclonal antibodies against the viral p18 protein. J Gen Virol, 70 ( Pt 11) (11), pp. 2853-2863. | Show Abstract | Read more

The sequences coding for the p18 protein of CBL-1, a British human immunodeficiency virus (HIV) type 1 isolate, were expressed in Escherichia coli as beta-galactosidase fusion proteins. The recombinant proteins were used to screen a panel of five monoclonal antibodies (MAbs) raised against p18 expressed in CBL-1-infected cells. The regions containing the epitopes for four of the MAbs were located using carboxy deletion mutants and synthetic peptides. The epitope of one of the MAbs (1D9) was reconstructed as part of an unfused, E. coli-expressed p18 protein using the polymerase chain reaction technique. Four different HIV strains and one lymphadenopathy virus type 2 strain were analysed by fluorescence-activated cell sorting of live infected cells using the p18-reactive MAbs.

Bates PA, McGregor MJ, Islam SA, Sattentau QJ, Sternberg MJ. 1989. A predicted three-dimensional structure for the human immunodeficiency virus binding domains of CD4 antigen. Protein Eng, 3 (1), pp. 13-21. | Show Abstract | Read more

A predicted three-dimensional structure of the two N-terminal extracellular domains of human CD4 antigen, a cell surface glycoprotein, is reported. This region of CD4, particularly the first domain, has been identified as containing the binding region for the envelope gp120 protein of the human immunodeficiency virus. The model was predicted based on the sequence homology of each domain with the variable light chain of immunoglobulins. The framework beta-sheet regions were taken from the crystal coordinates of REI. For one region in the first domain of CD4 there was an ambiguity in the alignment with REI and two alternate models are presented. Loops connecting the framework were modelled from fragments selected from a database of main chain coordinates from all known protein structures. Residues identified as involved in binding gp120 have been located in several other studies within the first domain of CD4. Epitopes from eight monoclonal antibodies have been mapped onto residues in both domains. Competition of these antibodies with each other and with gp120 can be interpreted from the structural model.

Sattentau QJ, Arthos J, Deen K, Hanna N, Healey D, Beverley PC, Sweet R, Truneh A. 1989. Structural analysis of the human immunodeficiency virus-binding domain of CD4. Epitope mapping with site-directed mutants and anti-idiotypes. J Exp Med, 170 (4), pp. 1319-1334. | Show Abstract | Read more

The CD4 molecule, a differentiation marker expressed primarily by T lymphocytes, plays an important role in lymphocyte activation. CD4 is also the receptor for HIV. A number of recent studies have localized the high affinity binding site of the HIV envelope glycoprotein, gp120, to the NH2-terminal (V1) domain of CD4, a region with sequence and predicted structural homology with Ig kappa chain V domains (V kappa). In this report, we show that V1 bears structural similarities with V kappa regions through detailed epitope mapping of 26 CD4 mAbs. The binding sites of these mAbs were initially defined relative to one another by crossblocking analysis and were then localized to specific domains of CD4 in blocking studies with truncated, soluble CD4 proteins. The epitopes within the V1 domain were mapped in detail with a panel of 17 substitution mutants, and the specificities of several mAbs that appear to recognize very similar epitopes were examined in crossblocking studies with anti-idiotype antibodies. The location of the epitopes is consistent with a V kappa-like structure of V1. Most of the epitopes lie within regions of predicted exposed loops. A number of these epitopes span discontinuous residues in the linear sequence that lies in close proximity in an Ig fold. Alignment of CD4 V1 with the Ig V kappa chains places these epitopes within stretches corresponding to the complimentarity-determining regions. This epitope analysis is relevant for a vaccine strategy for HIV based on anti-idiotype antibodies to CD4 mAbs and for studies with CD4 antibodies on the role of CD4 in T lymphocyte activation.

Beverley PC, Healey D, Broadhurst K, Sattentau QJ. 1989. Limitations of the anti-idiotype strategy for an HIV vaccine. J Autoimmun, 2 Suppl (SUPPL. 1), pp. 243-249. | Show Abstract | Read more

Attempts to raise protective immunity to HIV have been notably ineffective. However the conservation of binding of different virus strains to CD4 suggests that the HIV envelope glycoprotein (gp120) should have a conserved site for CD4. Attempts to raise neutralizing anti-idiotypes to CD4 monoclonal antibodies (MoAbs) have generated polyclonal sera which block HIV-induced syncytium formation in vitro but have low titres. Mapping of CD4 epitopes recognized by CD4 MoAbs and gp120 indicates that none of the present CD4 MoAbs bind to exactly the same site as gp120, which may explain the relative lack of success of the anti-idiotype approach to date.

Arthos J, Deen KC, Chaikin MA, Fornwald JA, Sathe G, Sattentau QJ, Clapham PR, Weiss RA, McDougal JS, Pietropaolo C. 1989. Identification of the residues in human CD4 critical for the binding of HIV. Cell, 57 (3), pp. 469-481. | Show Abstract | Read more

The CD4 molecule is a T cell surface glycoprotein that interacts with high affinity with the envelope glycoprotein of the human immunodeficiency virus, HIV, thus serving as a cellular receptor for this virus. To define the sites on CD4 essential for binding to gp120, we produced several truncated, soluble derivatives of CD4 and a series of 26 substitution mutants. Quantitative binding analyses with the truncated proteins demonstrate that the determinants for high affinity binding lie solely with the first 106 amino acids of CD4 (the V1 domain), a region having significant sequence homology to immunoglobulin variable regions. Analysis of the substitution mutants further defines a discrete binding site within this domain that overlaps a region structurally homologous to the second complementarity-determining region of antibody variable domains. Finally, we demonstrate that the inhibition of virus infection and virus-mediated cell fusion by soluble CD4 proteins depends on their association with gp120 at this binding site.

SINGER CRJ, AZIM T, SATTENTAU Q. 1988. PRELIMINARY EVALUATION OF PHTHALOCYANINE PHOTOSENSITIZATION FOR INACTIVATION OF VIRAL PATHOGENS IN BLOOD PRODUCTS BRITISH JOURNAL OF HAEMATOLOGY, 69 (1), pp. 111-111.

SATTENTAU Q. 1988. AIDS - THE SEARCH FOR THE VACCINE NEW SCIENTIST, 118 (1608), pp. 56-60.

SATTENTAU Q. 1988. AIDS - OUR DEFENSES ARE DOWN NEW SCIENTIST, 118 (1607), pp. 49-53.

Sattentau QJ, Clapham PR, Weiss RA, Beverley PC, Montagnier L, Alhalabi MF, Gluckmann JC, Klatzmann D. 1988. The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS, 2 (2), pp. 101-105. | Show Abstract | Read more

The cellular receptor for HIV-1 is the leucocyte differentiation antigen, CD4. Blocking of HIV-1 infectivity can be achieved with monoclonal antibodies (MAbs) to some, but not all epitopes of this antigen. We demonstrate here, by inhibition of virus infection, blocking of syncytium formation and inhibition of pseudotype infection with a panel of CD4 MAbs, that HIV-1, HIV-2 and simian immunodeficiency virus (SIV) isolates share the same cellular receptor, the CD4 glycoprotein. It is also shown that very similar epitopes of this molecule are involved in virus binding. We infer from these data that the binding sites on these viruses are highly conserved regions, and may therefore make good targets for potential vaccines. In addition, we show that cell surface expression of CD4 is similarly modulated after infection of cell lines by all the viruses.

Sattentau QJ, Weiss RA. 1988. The CD4 antigen: physiological ligand and HIV receptor. Cell, 52 (5), pp. 631-633. | Read more

Sattentau QJ. 1988. The role of the CD4 antigen in HIV infection and immune pathogenesis. AIDS, 2 Suppl 1 (SUPPL. 1), pp. S11-S16. | Show Abstract | Read more

Tremendous progress has been made in the past year in understanding the interaction between HIV and its highly efficient route for infection of permissive cells, the CD4 antigen. The cloning of the CD4 gene has allowed the construction and expression of truncated and mutated forms of CD4. This in turn has led to soluble forms of the antigen with potential therapeutic use, and the ability to analyse in great detail the steps of HIV binding and entry into the cell. In addition, studies on the distribution of CD4 have expanded our knowledge of the tissue tropism of HIV, which can be directly related to infection in vivo in cells such as macrophages and those of the brain. There is evidence that the binding of HIV envelope to CD4 triggers activation of cells of the immune system and may thus bring about inappropriate modulation of the immune response. Finally, there is mounting evidence that HIV may enter certain cells via an alternative although less efficient receptor.

Weiss RA, Clapham PR, McClure MO, McKeating JA, McKnight A, Dalgleish AG, Sattentau QJ, Weber JN. 1988. Human immunodeficiency viruses: neutralization and receptors. J Acquir Immune Defic Syndr, 1 (6), pp. 536-541. | Show Abstract

The envelope glycoproteins of HIV, gp120 and gp41, contain epitopes recognized by neutralizing antibodies. Studies of human sera from infected individuals indicate that group-specific neutralization antigens common to most isolates of HIV-1 exist, and that some HIV-2 antisera cross-neutralize HIV-1. Neutralization epitopes for HIV-1 have been identified and mapped, including a group-specific antigen on gp41, and a type-specific antigen on gp120. Neutralization "escape" mutants have been selected in vitro with a neutralizing mab to the type-specific antigenic loop. The CD4 antigen binds HIV-1 gp120 with high affinity and acts as the receptor on human and simian T-lymphocytes and monocytes for all strains of HIV-1, HIV-2, and SIV tested. Following binding to the CD4 receptor, HIV becomes internalized by a pH-independent process. The principle binding domain for gp120 is located in the N-terminal V domain of CD4. Anti-idiotypic sera to CD4 mabs recognizing the same site weakly neutralize HIVs of many strains, and soluble, recombinant forms of CD4 strongly neutralize HIV. Neither anti-CD4 mabs nor sCD4 inhibit the low level of plating of HIV observed on tumour cells in culture of glial (brain) and muscle origin, indicating that CD4 is not essential for infection of these cell types.

McClure MO, Sattentau QJ, Beverley PC, Hearn JP, Fitzgerald AK, Zuckerman AJ, Weiss RA. 1987. HIV infection of primate lymphocytes and conservation of the CD4 receptor. Nature, 330 (6147), pp. 487-489. | Show Abstract | Read more

The CD4 T-lymphocyte differentiation antigen is an essential component of the cell surface receptor for human immunodeficiency viruses (HIVs) causing AIDS (acquired immune deficiency syndrome) (refs 1-3). Peripheral blood lymphocytes of apes, New World and Old World monkeys express cell surface antigens homologous to CD4 of human T-helper lymphocytes. The cells of several of these species can be infected in short term culture with diverse strains of the type-1 or type-2 human immunodeficiency viruses (HIV-1 and HIV-2). HIV-1 is the prototype AIDS virus, and HIV-2 is the second type of AIDS virus, prevalent in West Africa. Infection of the primate cells correlates with evolutionary conservation on CD4 of one particular epitope cluster, and is inhibited by treatment of the cells with monoclonal antibodies to this epitope. The capacity of HIV to replicate in simian cells may provide a means for evaluating antiviral drugs and vaccines.

Christofinis G, Papadaki L, Sattentau Q, Ferns RB, Tedder R. 1987. HIV replicates in cultured human brain cells. AIDS, 1 (4), pp. 229-234. | Show Abstract

Adherent human embryo brain cells have been infected with HIV. Cells replicating HIV were maintained in culture for seven sequential passes over 7 months and continued to produce HIV during that time. Human embryo brain cells displayed glial-cell morphology and expressed glial fibrillary acidic protein. Electron microscopy showed clusters of virus particles around these cells as well as budding virus. Extracted, infected glial cells revealed bands for three major gag proteins, p18, p24 and p55, in Western blotting. It was not possible to detect CD4 antigen on the surface of these cells by indirect immunofluorescence or alkaline phosphatase staining with CD4 monoclonal antibodies. The results of these experiments indicate that HIV replicates in non-malignant brain cells. This observation strengthens the postulated aetiological link between HIV and the encephalopathy, dementia and other neurological symptoms observed in HIV-infected patients.

Beall GN, Lal S, Sattentau QJ, Weller IV, Beverley PC. 1987. Failure to demonstrate anti-lymphocytic antibody in serum of patients with AIDS. AIDS, 1 (3), pp. 167-170. | Show Abstract

Several studies have produced evidence for anti-lymphocytic antibodies (ALA) in AIDS. We attempted to demonstrate ALA by immunofluorescent flow cytometry. Normal human peripheral blood lymphocytes (PBL) and the T-cell line, CEM, were incubated with sera from patients with AIDS, patients with chronic HIV infection and HIV-seronegative blood donors. ALA were not detected in the AIDS sera with fluorescein isothiocyanate (FITC)-labelled rabbit anti-mu, anti-alpha or the F(ab)2 fragment of anti-human gamma. A small number of CEM cells (2%) fluoresced with either AIDS or normal serum. A larger proportion of PBL were immunofluorescent after serum treatment but there was no difference between normal and AIDS serum. We were able to detect ALA in the serum of patients with systemic lupus erythematosus with both CEM and PBL. In contrast, incubation of either CEM or PBL with some AIDS sera, and to a lesser degree normal sera, enhanced the binding of intact FITC-rabbit anti-gamma. Anti-gamma was not bound by CEM cells unexposed to human serum. The binding was blocked by rabbit immunoglobulin, demonstrable with CEM fixed in 1% formalin, and unrelated to the density of CD4 on CEM cells.

Beverley P, Sattentau Q. 1987. ABC of AIDS. Immunology of AIDS. Br Med J (Clin Res Ed), 294 (6586), pp. 1536-1538. | Read more

Weller IV, Carne CA, Sattentau Q, Smith A, Tedder RS, Clapham P, Dalgleish A, Weber J, Adler MW. 1987. Human immunodeficiency virus (HIV) infection in the regular sexual partners of homosexual men with AIDS and persistent generalised lymphadenopathy. J Med Virol, 22 (1), pp. 91-98. | Show Abstract | Read more

Thirty-five homosexual men who had been the regular sexual partners (for at least 6 months) of anti-HIV-positive patients with AIDS (N = 18) or PGL (N = 17) were studied. Twenty-one (60%) were seropositive, but 14 (40%) were consistently anti-HIV-negative. The duration of relationship with the index case was not statistically different in seropositive compared to seronegative partners; median 26 months (range 7-60) vs 30 months (range 7-60). However, seropositive partners had a significantly higher monthly number of other sexual partners and sexually transmitted diseases and a higher frequency of insertive and receptive anal intercourse in the preceding five years. The risk of acquiring HIV infection was significantly increased by frequent receptive anal intercourse when the frequency of insertive was controlled for but not the converse. Seronegative partners had undetectable antibodies by live and fixed cell immunofluorescence and by radioimmunoprecipitation and were repeatedly negative by competitive enzyme immunoassay. Furthermore, the sera of seronegative partners lacked HIV neutralising activity. Peripheral blood mononuclear cells (PBMCs) from seronegative partners, stained with monoclonal antibodies to seven different CD4 epitopes, revealed no differences when compared to those from heterosexual controls and no qualitative differences from cells from seropositive individuals. In addition, PBMCs from seronegative partners could be productively infected by HIV in vitro. If resistance to infection in seronegative partners exists, then it is likely that mechanisms other than a specific humoral immunity or CD4 polymorphisms are involved.

BEALL GN, LAL S, SATTENTAU Q, WELLER I, BEVERLEY PCL. 1987. FAILURE TO DETECT ANTILYMPHOCYTIC ANTIBODIES (ALA) IN AIDS JOURNAL OF CELLULAR BIOCHEMISTRY, pp. 63-63.

Sattentau QJ, Dalgleish AG, Weiss RA, Beverley PC. 1986. Epitopes of the CD4 antigen and HIV infection. Science, 234 (4780), pp. 1120-1123. | Show Abstract | Read more

The CD4 (or T4) surface antigen of human T lymphocytes is an important part of the receptor for the human immunodeficiency virus (HIV). After binding to the receptor, the HIV may enter the T cell and induce the formation of syncytia. In an attempt to identify the receptor site more closely, monoclonal antibodies (Mab's) to CD4 were tested for their ability to block HIV infection in a syncytium formation assay, and the CD4 epitopes so identified were mapped by antibody cross-blocking. The antibodies that showed strong inhibition of HIV fell into two main families while a third group of Mab's blocked syncytia formation weakly or not at all. Several different isolates of HIV as well as the laboratory strain CBL1 grown in CEM cells were used to induce the syncytia. The data indicate that only some epitopes of CD4 are important for virus binding and imply that the virus-binding site for CD4 is conserved in different isolates of HIV with substantially divergent env gene sequences. Preliminary studies of patients suggest that polymorphism of these epitopes does not play a role in determining susceptibility to infection.

Moghaddam AE, Hillson WR, Noti M, Gartlan KH, Johnson S, Thomas B, Artis D, Sattentau QJ. 2014. Dry roasting enhances peanut-induced allergic sensitization across mucosal and cutaneous routes in mice. J Allergy Clin Immunol, 134 (6), pp. 1453-1456. | Read more

Sheppard NC, Brinckmann SA, Gartlan KH, Puthia M, Svanborg C, Krashias G, Eisenbarth SC, Flavell RA, Sattentau QJ, Wegmann F. 2014. Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. Int Immunol, 26 (10), pp. 531-538. | Show Abstract | Read more

Polyethyleneimine (PEI) is an organic polycation used extensively as a gene and DNA vaccine delivery reagent. Although the DNA targeting activity of PEI is well documented, its immune activating activity is not. We recently reported that PEI has robust mucosal adjuvanticity when administered intranasally with glycoprotein antigens. Here, we show that PEI has strong immune activating activity after systemic delivery. PEI administered subcutaneously with viral glycoprotein (HIV-1 gp140) enhanced antigen-specific serum IgG production in the context of mixed Th1/Th2-type immunity. PEI elicited higher titers of both antigen binding and neutralizing antibodies than alum in mice and rabbits and induced an increased proportion of antibodies reactive with native antigen. In an intraperitoneal model, PEI recruited neutrophils followed by monocytes to the site of administration and enhanced antigen uptake by antigen-presenting cells. The Th bias was modulated by PEI activation of the Nlrp3 inflammasome; however its global adjuvanticity was unchanged in Nlrp3-deficient mice. When coformulated with CpG oligodeoxynucleotides, PEI adjuvant potency was synergistically increased and biased toward a Th1-type immune profile. Taken together, these data support the use of PEI as a versatile systemic adjuvant platform with particular utility for induction of secondary structure-reactive antibodies against glycoprotein antigens.

Duncan CJA, Williams JP, Schiffner T, Gärtner K, Ochsenbauer C, Kappes J, Russell RA, Frater J, Sattentau QJ. 2014. High-multiplicity HIV-1 infection and neutralizing antibody evasion mediated by the macrophage-T cell virological synapse. J Virol, 88 (4), pp. 2025-2034. | Show Abstract | Read more

Macrophage infection is considered to play an important role in HIV-1 pathogenesis and persistence. Using a primary cell-based coculture model, we show that monocyte-derived macrophages (MDM) efficiently transmit a high-multiplicity HIV-1 infection to autologous CD4(+) T cells through a viral envelope glycoprotein (Env) receptor- and actin-dependent virological synapse (VS), facilitated by interactions between ICAM-1 and LFA-1. Virological synapse (VS)-mediated transmission by MDM results in high levels of T cell HIV-1 integration and is 1 to 2 orders of magnitude more efficient than cell-free infection. This mode of cell-to-cell transmission is broadly susceptible to the activity of CD4 binding site (CD4bs) and glycan or glycopeptide epitope-specific broadly neutralizing monoclonal antibodies (bNMAbs) but shows resistance to bNMAbs targeting the Env gp41 subunit membrane-proximal external region (MPER). These data define for the first time the structure and function of the macrophage-to-T cell VS and have important implications for bNMAb activity in HIV-1 prophylaxis and therapy. IMPORTANCE The ability of HIV-1 to move directly between contacting immune cells allows efficient viral dissemination with the potential to evade antibody attack. Here, we show that HIV-1 spreads from infected macrophages to T cells via a structure called a virological synapse that maintains extended contact between the two cell types, allowing transfer of multiple infectious events to the T cell. This process allows the virus to avoid neutralization by a class of antibody targeting the gp41 subunit of the envelope glycoproteins. These results have implications for viral spread in vivo and the specificities of neutralizing antibody elicited by antibody-based vaccines.

Smalls-Mantey A, Connors M, Sattentau QJ. 2013. Comparative efficiency of HIV-1-infected T cell killing by NK cells, monocytes and neutrophils. PLoS One, 8 (9), pp. e74858. | Show Abstract | Read more

HIV-1 infected cells are eliminated in infected individuals by a variety of cellular mechanisms, the best characterized of which are cytotoxic T cell and NK cell-mediated killing. An additional antiviral mechanism is antibody-dependent cellular cytotoxicity. Here we use primary CD4(+) T cells infected with the BaL clone of HIV-1 as target cells and autologous NK cells, monocytes, and neutrophils as effector cells, to quantify the cytotoxicity mediated by the different effectors. This was carried out in the presence or absence of HIV-1-specific antiserum to assess antibody-dependent cellular cytotoxicity. We show that at the same effector to target ratio, NK cells and monocytes mediate similar levels of both antibody-dependent and antibody-independent killing of HIV-1-infected T cells. Neutrophils mediated significant antibody-dependent killing of targets, but were less effective than monocytes or NK cells. These data have implications for acquisition and control of HIV-1 in natural infection and in the context of vaccination.

Schiffner T, Sattentau QJ, Dorrell L. 2013. Development of prophylactic vaccines against HIV-1. Retrovirology, 10 (1), pp. 72. | Show Abstract | Read more

The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.

Cited:

28

European Pubmed Central

Schiffner T, Kong L, Duncan CJA, Back JW, Benschop JJ, Shen X, Huang PS, Stewart-Jones GB, DeStefano J, Seaman MS et al. 2013. Immune focusing and enhanced neutralization induced by HIV-1 gp140 chemical cross-linking. J Virol, 87 (18), pp. 10163-10172. | Show Abstract | Read more

Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design.

Wegmann F, Gartlan KH, Harandi AM, Brinckmann SA, Coccia M, Hillson WR, Kok WL, Cole S, Ho L-P, Lambe T et al. 2012. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nat Biotechnol, 30 (9), pp. 883-888. | Show Abstract | Read more

Protection against mucosally transmitted infections probably requires immunity at the site of pathogen entry, yet there are no mucosal adjuvant formulations licensed for human use. Polyethyleneimine (PEI) represents a family of organic polycations used as nucleic acid transfection reagents in vitro and DNA vaccine delivery vehicles in vivo. Here we show that diverse PEI forms have potent mucosal adjuvant activity for viral subunit glycoprotein antigens. A single intranasal administration of influenza hemagglutinin or herpes simplex virus type-2 (HSV-2) glycoprotein D with PEI elicited robust antibody-mediated protection from an otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen, which were taken up by antigen-presenting cells in vitro and in vivo, promoted dendritic cell trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host double-stranded DNA that triggered Irf3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use.

Cited:

26

European Pubmed Central

Lai RPJ, Seaman MS, Tonks P, Wegmann F, Seilly DJ, Frost SDW, LaBranche CC, Montefiori DC, Dey AK, Srivastava IK et al. 2012. Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund's adjuvants. PLoS One, 7 (4), pp. e35083. | Show Abstract | Read more

Adjuvant formulations capable of inducing high titer and high affinity antibody responses would provide a major advance in the development of vaccines to viral infections such as HIV-1. Although oil-in-water emulsions, such as Freund's adjuvant (FCA/FIA), are known to be potent, their toxicity and reactogenicity make them unacceptable for human use. Here, we explored different adjuvants and compared their ability to elicit antibody responses to FCA/FIA. Recombinant soluble trimeric HIV-1 gp140 antigen was formulated in different adjuvants, including FCA/FIA, Carbopol-971P, Carbopol-974P and the licensed adjuvant MF59, or combinations of MF59 and Carbopol. The antigen-adjuvant formulation was administered in a prime-boost regimen into rabbits, and elicitation of antigen binding and neutralizing antibodies (nAbs) was evaluated. When used individually, only FCA/FIA elicited significantly higher titer of nAbs than the control group (gp140 in PBS (p<0.05)). Sequential prime-boost immunizations with different adjuvants did not offer improvements over the use of FCA/FIA or MF59. Remarkably however, the concurrent use of the combination of Carbopol-971P and MF59 induced potent adjuvant activity with significantly higher titer nAbs than FCA/FIA (p<0.05). This combination was not associated with any obvious local or systemic adverse effects. Antibody competition indicated that the majority of the neutralizing activities were directed to the CD4 binding site (CD4bs). Increased antibody titers to the gp41 membrane proximal external region (MPER) and gp120 V3 were detected when the more potent adjuvants were used. These data reveal that the combination of Carbopol-971P and MF59 is unusually potent for eliciting nAbs to a variety of HIV-1 nAb epitopes.

Cited:

23

European Pubmed Central

Kong L, Sattentau QJ. 2012. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design. J AIDS Clin Res, S8 pp. 3. | Show Abstract | Read more

Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today's rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome.

Sattentau QJ. 2011. Vaccinology: A sweet cleft in HIV's armour. Nature, 480 (7377), pp. 324-325. | Read more

Wegmann F, Krashias G, Lühn K, Laamanen K, Vieira S, Jeffs SA, Shattock RJ, Sattentau QJ. 2011. A novel strategy for inducing enhanced mucosal HIV-1 antibody responses in an anti-inflammatory environment. PLoS One, 6 (1), pp. e15861. | Show Abstract | Read more

Prophylactic vaccination against HIV-1 sexual transmission will probably require antibody elicitation at genital mucosal surfaces. However, HIV-1 envelope glycoprotein (Env)-based antigens are weakly immunogenic, particularly when applied mucosally. The polyanion PRO 2000 is safe for human vaginal application, and thus may represent a potential formulating agent for vaginal delivery of experimental vaccine immunogens. Based upon its biochemical properties, we hypothesized that PRO 2000 might enhance mucosal immunogenicity of HIV-1 envelope glycoprotein (Env)-based antigens, promoting local and systemic immune responses. Vaginal immunization with Env-PRO 2000 resulted in significantly increased titres of Env-specific mucosal IgA and IgG in mice and rabbits, respectively, compared to Env alone, revealing modest but significant mucosal adjuvant activity for PRO 2000. In vitro, PRO 2000 associated with Env, protecting the glycoprotein from proteolytic degradation in human vaginal lavage. Unexpectedly, PRO 2000 antagonized TLR4 activation, suppressing local production of inflammatory cytokines. Since inflammation-mediated recruitment of viral target cells is a major risk factor in HIV-1 transmission, the immune modulatory and anti-inflammatory activities of PRO 2000 combined with its intravaginal safety profile suggests promise as an HIV-1 mucosal vaccine formulating agent.

Kong L, Sheppard NC, Stewart-Jones GBE, Robson CL, Chen H, Xu X, Krashias G, Bonomelli C, Scanlan CN, Kwong PD et al. 2010. Expression-system-dependent modulation of HIV-1 envelope glycoprotein antigenicity and immunogenicity. J Mol Biol, 403 (1), pp. 131-147. | Show Abstract | Read more

Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.

2304