Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Malaria parasites such as Plasmodium falciparum have exerted formidable selective pressures on the human genome. Of the human genetic variants associated with malaria protection, beta thalassaemia (a haemoglobinopathy) was the earliest to be associated with malaria prevalence. However, the malaria protective properties of beta thalassaemic erythrocytes remain unclear. Here we studied the mechanics and surface protein expression of beta thalassaemia heterozygous erythrocytes, measured their susceptibility to P. falciparum invasion, and calculated the energy required for merozoites to invade them. We found invasion-relevant differences in beta thalassaemic cells versus matched controls, specifically: elevated membrane tension, reduced bending modulus, and higher levels of expression of the major invasion receptor basigin. However, these differences acted in opposition to each other with respect to their likely impact on invasion, and overall we did not observe beta thalassaemic cells to have lower P. falciparum invasion efficiency for any of the strains tested.

Original publication

DOI

10.1038/s41598-022-12060-4

Type

Journal article

Journal

Scientific reports

Publication Date

27/05/2022

Volume

12

Addresses

Cavendish Laboratory, University of Cambridge, Cambridge, UK.

Keywords

Erythrocyte Membrane, Humans, Plasmodium falciparum, Malaria, Malaria, Falciparum, beta-Thalassemia, Heterozygote